• Title/Summary/Keyword: Ultra low-k

Search Result 900, Processing Time 0.028 seconds

An Investigation of Combustion and EmissionCharacteristics in Heavy-Duty Hydrogen-CNG Engine (중대형 수소-천연가스 기관의 수소혼합율 변화에 대한 연소 및 배기특성)

  • LIM, H.S.;KIM, Y.Y.;LEE, J.T.
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.3
    • /
    • pp.276-282
    • /
    • 2003
  • A hydrogen enriched CNG engine can be stably operated at ultra lean condition and reduce emission extremely. It also has advantage to increase gradually the use of hydrogen for the coming hydrogen-energy age. In this studies, the combustion and emission characteristics of heavy-duty hydrogen-CNG engine were investigated to verify the enhancement of performance by enriched hydrogen into natural gas. The results showed that a hydrogen-CNG engine could achieve ultra lean operation and low emission, while power was reduced by the decrease of intake air flow.

Whole-body Management System using Ultra-Low Temperature Cyclical Cooling Method Combined with IT Technology (IT 기술을 접목한 초저온 순환 냉각 방식의 전신 관리 시스템)

  • Kim, Joo-Ho;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.673-676
    • /
    • 2020
  • In this paper, we propose a whole-body management system using ultra-low temperature cyclical cooling method combined with IT technology. The proposed system has the following characteristics. First, it minimizes maintenance costs by circulating nitrogen gas cooled by ultra-low temperature inside the controller. Secondly, based on the information measured by the temperature sensor and oxygen concentration sensor, nitrogen gas is supplied to provide safe ultra-low temperature whole-body management. Thirdly, after entering the user's height, it provides convenient, ultra-low temperature whole-body care that can be controlled using an automatic lift. Fourth, it provides an easy-to-access, easy-to-manage GUI and a manager-only web program for whole-body management system operation. The results tested by the authorized testing agency to assess the performance of the proposed system were measured in the range of ±5%, the world's highest temperature sensor accuracy, and a range of -110℃ to -150℃ greater than the world's highest whole-body management temperature range(-110℃ ~ -140℃). In addition, humidity was measured at less than 40%, the world's highest, and oxygen concentration was more than 18%, the world's highest. Therefore, the effectiveness of the methods proposed in this paper was demonstrated because they produced the same results as the world's highest levels.

A Noncoherent UWB Communication System for Low Power Applications

  • Yang, Suck-Chel;Park, Jung-Wan;Moon, Yong;Lee, Won-Cheol;Shin, Yo-An
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.210-216
    • /
    • 2004
  • In this paper, we propose a noncoherent On-Off Keying (OOK) Ultra Wide Band (UWB) system based on power detection with noise power calibration for low power applications. The proposed UWB system achieves good bit error rate performance which is favorably comparable to that of the system using the ideal adaptive threshold, while maintaining simple receiver structure, In addition, low power Analog Front-End (AFE) blocks for the proposed noncoherent UWB transceiver are proposed and verified using CMOS technology. Simulation results on the pulse generator, delay time generator and 1-bit Analog-to-Digital (AID) converter show feasibility of the proposed UWB AFE system.

An Ultra Low-Power and High-Speed Down-Conversion Level Shifter Using Low Temperature Poly-Si TFTs for Mobile Applications

  • Ahn, Soon-Sung;Choi, Jung-Hwan;Choi, Byong-Deok;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1279-1282
    • /
    • 2006
  • An ultra low-power down-conversion level shifter using low temperature poly-crystalline silicon thin film transistors is proposed for mobile applications. The simulation result shows that the power consumption of the proposed circuits is only 17% and the propagation delay is 48% of those of the conventional cross-coupled level shifter without additional area. And the measured power consumption is only 21% of that of the crosscoupled level shifter.

  • PDF

Sensitivity Evaluation of Physics and Initial Condition of WRF for Ultra Low Altitude Wind Prediction (초저고도 바람예측을 위한 WRF의 물리과정 및 초기조건 민감도 평가)

  • Kwon, JaeIl;Kim, Ki-Young;Ku, SungKwan;Hong, SeokMin
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.487-494
    • /
    • 2019
  • Recently, interest in and use of drones is increasing. In this study, to provide accurate wind prediction at ultra low altitudes of 150 meters or below, the sensitivity of the physical process parameterization and initial conditions was assessed to select the optimal physical process and initial conditions. For this purpose, GFS and LDAPS data were used as initial and boundary conditions, and 7 experiments were constructed using a combination of PBL schemes such as YSU, RUC, ACM2, and LSM such as Noah, RUC, and Pleim. The experiment conducted for 1 month in April 2018. As a result, the RUC-YSU physical process combination using the GFS initial data showed the best performance. This study is meaningful in establishing an optimal modeling method for ultra low altitude wind prediction through experiments using different initial conditions and combination of physical processes.

High-temperature superconducting filter and filter subsystem for mobile telecommunication

  • Sakakibara, Nobuyoshi
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.35-39
    • /
    • 2000
  • Large-area high-temperature superconducting (HTS) films, filter design and damage-free processing technique have been developed to fabricate low insertion loss and sharp skirt filters. Further, long life cryocooler, low temperature low noise amplifier (LNA) and cryocable have been developed to assemble HTS filter subsystem for IS-95 and IMT-2000 mobile telecommunication. The surface resistance of the films was about 0.2 milli-ohm at 70 K, 12 GHz. An 11-pole HTS filter for IS-95 telecommunication system and a 16-pole HTS filter for IMT-2000 telecommunication system were designed and fabricated using 60 {\times}$ 50 mm$^2$ and one half of 3-inch diameter YBCO films on a 0.5-mm-thick MgO substrate, respectively. We have assembled the filter and low temperature LNA in a dewar with the cryocooler. Ultra low-noise (noise figure: 0.5 dB at 70 K) and ultra sharp-skirt (40 dB/1.5 MHz) performance was presented by the IS-95 filter subsystem and the IMT-2000 filter subsystem, respectively.

  • PDF

Effect of Hot Forging on the Hardness and Toughness of Ultra High Carbon Low Alloy Steel (초 고 탄소 저합금강의 경도와 인성에 미치는 열간단조의 영향)

  • Kim, Jong-Beak;Kang, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.115-121
    • /
    • 2013
  • This study was carried out to investigate the effect of hot forging on the hardness and impact value of ultra high carbon low alloy steel. With increasing hot forging ratio, thickness of the network and acicular proeutectoid cementite decreased, and than were broken up into particle shapes, when the forging ratio was 80%, the network and acicular shape of the as-cast state disappeared. Interlamellar spacing and the thickness of eutectoid cementite decreased with increasing forging ratio, and were broken up into particle shapes, which then became spheroidized. With increasing hot forging ratio, hardness, tensile strength, elongation and impact value were not changed up 50%, and then hardness rapidly decreased, while impact value rapidly increased. Hardness and impact value was greatly affected by the disappeared of network and acicular shape of proeutectoid cementite, and became particle shape than thickness reduction of proeutectoid and eutectoid cementite.

Ultra-low cycle fatigue tests of Class 1 H-shaped steel beams under cyclic pure bending

  • Zhao, Xianzhong;Tian, Yafeng;Jia, Liang-Jiu;Zhang, Tao
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.439-452
    • /
    • 2018
  • This paper presents experimental and numerical study on buckling behaviors and hysteretic performance of Class 1 H-shaped steel beam subjected to cyclic pure bending within the scope of ultra-low cycle fatigue (ULCF). A loading device was designed to achieve the pure bending loading condition and 4 H-shaped specimens with a small width-to-thickness ratio were tested under 4 different loading histories. The emphasis of this work is on the impacts induced by local buckling and subsequent ductile fracture. The experimental and numerical results indicate that the specimen failure is mainly induced by elasto-plastic local buckling, and is closely correlated with the plastic straining history. Compared with monotonic loading, the elasto-plastic local buckling can occur at a much smaller displacement amplitude due to a number of preceding plastic reversals with relative small strain amplitudes, which is mainly correlated with decreasing tangent modulus of the material under cyclic straining. Ductile fracture is found to be a secondary factor leading to deterioration of the load-carrying capacity. In addition, a new ULCF life evaluation method is proposed for the specimens using the concept of energy decomposition, where the cumulative plastic energy is classified into two categories as isotropic hardening and kinematic hardening correlated. A linear correlation between the two energies is found and formulated, which compares well with the experimental results.

High-frame-rate Video Denoising for Ultra-low Illumination

  • Tan, Xin;Liu, Yu;Zhang, Zheng;Zhang, Maojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4170-4188
    • /
    • 2014
  • In this study, we present a denoising algorithm for high-frame-rate videos in an ultra-low illumination environment on the basis of Kalman filtering model and a new motion segmentation scheme. The Kalman filter removes temporal noise from signals by propagating error covariance statistics. Regarded as the process noise for imaging, motion is important in Kalman filtering. We propose a new motion estimation scheme that is suitable for serious noise. This scheme employs the small motion vector characteristic of high-frame-rate videos. Small changing patches are intentionally neglected because distinguishing details from large-scale noise is difficult and unimportant. Finally, a spatial bilateral filter is used to improve denoising capability in the motion area. Experiments are performed on videos with both synthetic and real noises. Results show that the proposed algorithm outperforms other state-of-the-art methods in both peak signal-to-noise ratio objective evaluation and visual quality.

Analysis of Novel Approach to Design of Ultra-wide Stopband Microstrip Low-Pass Filter Using Modified U-Shaped Resonator

  • Karimi, Gholamreza;Lalbakhsh, Ali;Dehghani, Khatereh;Siahkamari, Hesam
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.945-950
    • /
    • 2015
  • A novel microstrip low-pass filter is presented to achieve an ultra-wide stopband with 11 harmonic suppression and very sharp skirt characteristics. The filter is composed of a modified U-shaped resonator (which creates two fully adjustable transmission zeroes), a T-shaped resonator (which determines a cut-off frequency), and four radial stubs (which provide a wider stopband). The operating mechanism of the filter is investigated based on a proposed equivalent-circuit model, and the role of each section of the proposed filter in creating null points is theoretically discussed in detail. The presented filter with 3 dB cut-off frequency ($f_c=2.35GHz$) has been fabricated and measured. Results show that a relative stopband bandwidth of 164% (referred to as a 22 dB suppression) is obtained while achieving a high figure-of-merit of 15,221.