DOI QR코드

DOI QR Code

초저고도 바람예측을 위한 WRF의 물리과정 및 초기조건 민감도 평가

Sensitivity Evaluation of Physics and Initial Condition of WRF for Ultra Low Altitude Wind Prediction

  • 권재일 (주식회사 포디솔루션) ;
  • 김기영 (주식회사 포디솔루션) ;
  • 구성관 (한서대학교 항공산업공학과) ;
  • 홍석민 (한서대학교 무인항공기학과)
  • Kwon, JaeIl (4D SOLUTION CO., LTD.) ;
  • Kim, Ki-Young (4D SOLUTION CO., LTD.) ;
  • Ku, SungKwan (Department of Aviation Industrial and System Engineering, Hanseo University) ;
  • Hong, SeokMin (Department of Unmanned Aircraft System, Hanseo University)
  • 투고 : 2019.11.22
  • 심사 : 2014.10.07
  • 발행 : 2019.12.30

초록

최근 드론 등의 무인비행체에 대한 관심과 활용이 높아지고 있다. 본 연구에서는 고도 150 m 이하 초저고도의 정확한 바람예측 정보를 제공하기 위해, 물리과정 모수화와 초기조건에 따른 민감도를 평가하여 최적의 물리과정 및 초기조건을 선정하고자 하였다. 이를 위해 GFS 및 LDAPS 자료를 초기 및 경계조건으로 사용하였고, YSU, RUC, ACM2 등의 대기경계층 모수화 방안과 Noah, RUC, Pleim 등의 지면모델을 조합한 7개의 실험을 구축하여, 2018년 4월의 1개월에 대해 수행하였다. 그 결과 GFS 초기자료를 사용한 RUC-YSU 물리과정 조합이 가장 우수한 성능을 나타냈다. 본 연구는 다양한 물리과정의 조합과 초기 및 경계자료를 사용한 실험을 통해 초저고도 바람예측을 위한 최적 모델링 방안을 설정한 것에 의의가 있을 것이라 판단된다.

Recently, interest in and use of drones is increasing. In this study, to provide accurate wind prediction at ultra low altitudes of 150 meters or below, the sensitivity of the physical process parameterization and initial conditions was assessed to select the optimal physical process and initial conditions. For this purpose, GFS and LDAPS data were used as initial and boundary conditions, and 7 experiments were constructed using a combination of PBL schemes such as YSU, RUC, ACM2, and LSM such as Noah, RUC, and Pleim. The experiment conducted for 1 month in April 2018. As a result, the RUC-YSU physical process combination using the GFS initial data showed the best performance. This study is meaningful in establishing an optimal modeling method for ultra low altitude wind prediction through experiments using different initial conditions and combination of physical processes.

키워드

참고문헌

  1. S. J. Kim, J. H. Bae and C. Y. Choi, "A study on introduction of drone delivery service policies and development plans in countries," Korea Logistics Review, Vol. 26, No. 1, pp. 27-28, Feb. 2016.
  2. D. Y. Kim, B. R. Yun, S. H. Lee and W. J. Lee, "Improvement of altitude measurement algorithm based on accelerometer for holding drone's altitude," KIPS Transactions on Software and Data Engineering, Vol. 6, No. 10, pp. 473-478, Oct. 2017. https://doi.org/10.3745/KTSDE.2017.10.473
  3. Y. H. Ju, K. K. Moon, B. S. Kang, J. W. Jeong, H. G. Son and J. H. Cho, "Feasibility study on the methodology of test and evaluation for UAV positioning," Journal of Advanced Navigation Technology, Vol. 22, No. 6, pp. 530-536, Dec. 2018. https://doi.org/10.12673/JANT.2018.22.6.530
  4. W. B. Jeon, H. W. Lee and S. H. Lee, "Numerical study on characteristics of turbulence scheme in planetary boundary layer," Journal of the Environmental Sciences, Vol. 19, No. 2, pp. 137-148, Feb. 2010. https://doi.org/10.5322/JES.2010.19.2.137
  5. B. K. Seo, J. Y. Byon and Y. J. Choi, "Sensitivity evaluation of wind fields in surface layer by WRF-PBL and LSM parameterizations," Atmosphere, Vol. 20, No. 3, pp. 319-332, Sep. 2010.
  6. A. Y. Lim, J. W. Roh, J. B. Jee and Y. J. Choi, "Sensitivity experiments of vertical resolution and planetary boundary layer parameterization schemes on the Seoul metropolitan area using WRF model," Journal of the Korean Earth Science Society, Vol. 36, No. 6, pp. 553-566, Oct. 2015. https://doi.org/10.5467/JKESS.2015.36.6.553
  7. D. Siuta, G. West and R. Stull, "WRF hub-height wind forecast sensitivity to PBL scheme, grid length, and initial condition choice in complex terrain," Weather and Forecasting, Vol. 32, No. 2, pp. 493-509, Apr. 2017. https://doi.org/10.1175/WAF-D-16-0120.1
  8. S. Y. Hong, Y. Noh and J. Dudhia, "A new vertical diffusion package with an explicit treatment of entrainment processes," Monthly Weather Review, Vol. 134, No. 9, pp. 2318-2341, Sep. 2006. https://doi.org/10.1175/MWR3199.1
  9. G. L. Mellor and T. Yamada, "A hierarchy of turbulence closure models for planetary boundary layers," Journal of the Atmospheric Sciences, Vol. 31, No. 7, pp. 1791-1806, Oct. 1974. https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2
  10. J. E. Pleim and J. S. Chang, "A non-local closure model for vertical mixing in the convective boundary layer," Atmospheric Environment, Vol. 26, No. 6, pp. 965-981, Apr. 1992. https://doi.org/10.1016/0960-1686(92)90028-J
  11. F. Chen and J. Dudhia, "Coupling an advanced land surface-hydrology model with the Penn state - NCAR MM5 modeling system. Part I: Model implementation and sensitivity," Monthly Weather Review, Vol. 129, No. 4, pp. 569-585, Apr. 2001. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  12. T. G. Smirnova, J. M. Brown, S. G. Benjamin and D. S. Kim, "Parameterization of cold-season processes in the MAPS land-surface scheme," Journal of Geophysical Research, Vol. 105, No. D3, pp. 4077-4084, Feb. 2000. https://doi.org/10.1029/1999JD901047
  13. A. Xiu and J. E. Pleim, "Development of a land surface model. Part I: Application in a mesoscale meteorological model," Journal of Applied Meteorology and Climatology, Vol. 40, No. 2, pp. 192-209, Feb. 2001. https://doi.org/10.1175/1520-0450(2001)040<0192:DOALSM>2.0.CO;2