• Title/Summary/Keyword: Ultra high-rise building

Search Result 35, Processing Time 0.02 seconds

Reduction of Autogenous Shrinkage of HPFRCC Depending on Changes of ERCO Replacement Ratio and Fiber Replacement Ratio (ERCO 혼입율과 섬유혼입비 변화에 따른 HPFRCC의 자기수축저감)

  • Lee, Jea-Hyeon;Baek, Cheol;Jo, Man-Ki;Jo, Sung-Jun;Lee, Jong-Tea;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.30-31
    • /
    • 2016
  • As the treatments of many kinds of explosive objects increase recently, it is in the trend that explosion accidents increase. Thus, many studies on HPFRCC (High-performance Fiber-reinforced Cement Composites) whose ductility is enhanced are being conducted actively in order to minimize the damages from explosion accidents. However, HPFRCC, the self-shrinkage of HPFRCC is on the rise as a problem since it becomes ultra-high strengthened by using low W/B. Thus, in this study, it is intended to evaluate the capacity for reducing the self-shrinkage of HPFRCC depending on some changes of ERCO(Emulsified Refined Cooking Oil) replacement ratio and the fiber replacement ratio between some short steel fibers (SS) and some long organic fibers (OL). As a result, it was found that some excellent effects are exerted since the self-shrinkage was reduced a lot as the ERCO replacement ratio increases and the fiber replacement ratio of SS rather than OL increases.

  • PDF

The Improvement of the Specific Target for Fire Fighting of Fire Safety Grade System (특정소방대상물의 방화관리 등급체계 개선방안)

  • Kwak, Chang-Sik;Woo, Seong-Cheon;Chae, Jin
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.162-171
    • /
    • 2010
  • According to the development of industry, many aspects of society have been changed and a living environment has been more convenient than before. However, factors of fire risk are increased because of society which is becoming complex. Moreover, a building built in recently is becoming high-rise and intelligent. Then losses of life and property increase continually. Thus, an institutional strategy which can solve this problem is needed. The purpose of this research is to state a problem of specific a building managing strategy and suggests a reformation of the fire safety grade system of a specific building. The suggested ideas are an adoption of fire risk evaluation of a building, tentatively named "Fire Safety Corporation" establishment, reclassification of the fire safety grade system of a specific building, and newly making fire safety managers of ultra-high buildings and underground structures.

Physical and Chemical Properties of Nano-slag Mixed Mortar

  • Her, Jae-Won;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.6
    • /
    • pp.145-154
    • /
    • 2010
  • As buildings have become higher and larger, the use of high performance concrete has increased. With this increase, interest in and use of ultra fine powder admixture is also on the rise. The silica fume and BSF are the admixtures currently being used in Korea. However, silica fume is exclusively import dependent because it is not produced in Korea. In the case of BFS, it greatly improves concrete fluidity and long-term strength. But a problem exists in securing early strength. Furthermore, air-cooled slag is being discarded, buried in landfills, or used as road bed materials because of its low activation energy. Therefore, we investigated in this study the usability of nano-slag (both rapidly-chilled and air-cooled) as an alternative material to the silica fume. We conducted a physic-chemical analysis for the nano-slag powder and performed a mortar test to propose quality standards. The analysis and testing were done to find out the industrial usefulness of the BFS that has been grinded to the nano-level.

Study on Bearing Capacity of Ultra High Strengh End Extended PHC Pile by Loading Test (재하시험을 통한 초고강도 선단확장 PHC말뚝의 적용성 연구)

  • Hwang, Ui-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.269-275
    • /
    • 2019
  • As the national industry is developing gradually due to the expansion of the economic scale, the construction of large and super high-rise structures for building social infrastructure has been increasing, and studies have been conducted actively to transmit the large loads at the upper portion to the lower bedrock. In this study, the PHC was extended to an ultra-high strength PHC, which increased the concrete compressive strength of the PHC from the conventional 80 MPa to 110 MPa, and the PHC, which extended the tip of the pile. After construction with the driving method and injected pile method, the tendency of the bearing capacity was tested through a load test. Measurements of the bearing capacity of the extended PHC using the pile driving method revealed the main surface friction force to be smaller than that of the general PHC, and the stet-up effect was also insignificant. On the other hand, the effect of the friction force on the ground surface when the injected pile method was applied is expected to increase the bearing capacity when the gap between the main surface and the ground is wide and the cement paste is filled tightly. In addition, the ultrahigh strength PHC showed higher bearing capacity than the conventional PHC, and the permissible pile stress was less than 60%. Therefore, it is possible to reduce the number of piles and reduce the construction cost and effect of shortening the length of the pile by designing the tip of the pile on the ground with the intensity of soft rock as a method for utilizing the increased strength of the ultra-high strength PHC.

A Study on Unstable Phenomenon of Space Truss Structures Considering Initial Imperfection (트러스형 공간구조물의 초기 불완전을 고려한 불안정 현상에 관한 연구)

  • Lee, Jin-Hyouk;Baik, Tai-Soon;Shon, Su-Deok;Kim, Seung-Deog;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.2 s.12
    • /
    • pp.63-71
    • /
    • 2004
  • The structural space is gradually wide and is wanting agreeable environment by the requirement and necessity of people who lives modem stage. The building coincides with such requirements and is the high rise building actual circumstances which is doing ultra-large. The confirmed report of the technology to organize great merit is becoming currently considerably important issue in constructing a building field. Thus, this paper examine closely for nonlinear unstable taking a picture uneasiness height of prosperity considering to initial imperfection by a numerical method with a space frame structure of discrete system in large space structure. Based on previous investigation method, this paper induce nodal stiffness matrix of solid truss elements considering geometrical nonlinear using finite element method. In this paper, three types of space structure considered; i) 1-free node space structure, ii) 2-free node space structure, iii) multi-free node space structure. It apply the above examples to a nonlinear program, next, grasp the characteristic of an unstable conduct and the result was a clearing low.

  • PDF