• Title/Summary/Keyword: Ultra high performance concrete

Search Result 357, Processing Time 0.031 seconds

The Performance of Concrete Used High Strength Development Polycarboxylate Superplasticizer (고강도용 폴리카르본산계 고성능 감수제가 사용된 콘크리트의 성능)

  • Lee, Wan-Jo;Kang, Sung-Gu;Hwang, In-Dong;Lee, Jae-Yong;Park, Sung;Chug, Yun-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.182-187
    • /
    • 2005
  • There are many kinds of polycarboxylate superplasticizer as a functional classification which are introduced to domestic; Water Reducer, Retention, Ultra High Strength Superplasicizer. These are showed different physical behaviors because of the difference in the chemical system and the manners after cement mixing. In the case of water reducer, when $1.2\% of cement weight used, water reducing which is over $30\% is observed, but it take with segregation and the reduction of slump flow shows over 30 cm after 45 min of concrete produce. In the case of retention, when the same quantity used, water reducing which is about $25\% is observed and slump flow which is up to 45 min shows under 15 cm. And in the case of ultra high strength, when $1.2\% of cement weight used, water reducing which is over $30\% is observed, and slump flow which is up to 45 min recorded fewer than 15 cm. Compressive strength of ultra high strength superplasticizer has take effect of early age strength, and in the condition of specific mixing, 18 h-compressive strength is insured for more than $60\;Kgf/cm^2$ and 24 h-compressive strength is insured for more than $80\;Kgf/cm^2$.

Evaluation of Spalling Characteristics and Fire Resistance Fiber-Entrained Mixed Cement Concrete at Ultra-High Temperatures (섬유가 혼입된 혼합시멘트 콘크리트의 초고온에서의 폭렬특성 및 내화성능 평가)

  • Jun-Hwan Oh;Ju-Hyun Cheon;Man-Soo Lee;Sung-Won Yoo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.23-29
    • /
    • 2023
  • The goal of this study is to evaluate the bursting characteristics and fire resistance performance of mixed cement concrete containing fibers at very high temperatures. For this purpose, FA-based, Slag-based, and each mix according to the amount of fiber mixed were heated to room temperature, 150℃, 300℃, 600℃, and 900℃, and then the burst shape, compressive strength, and elastic modulus were measured and evaluated. As a result of the experiment, it was found that relatively more surface damage occurred in FA-based specimens when heated at ultra-high temperatures than in slag-based specimens, and there was a difference between the mix without fibers and the mix with fibers when heated at ultra-high temperatures, that is, at 900℃. In the mix without fibers, a decrease in strength of more than 5% occurred. In addition, the elastic modulus also showed the same phenomenon as the compressive strength, and in particular, the decrease in elastic modulus was found to be greater than the amount of decrease in compressive strength. Meanwhile, estimation equations for compressive strength and elastic modulus according to heating temperature were statistically proposed.

Fatigue analysis of partly damaged RC slabs repaired with overlaid UHPFRC

  • Deng, Pengru;Kakuma, Ko;Mitamura, Hiroshi;Matsumoto, Takashi
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.19-32
    • /
    • 2020
  • Due to repetitive traffic loadings and environmental attacks, reinforced concrete (RC) bridge deck slabs are suffering from severe degradation, which makes structural repairing an urgency. In this study, the fatigue performance of an RC bridge deck repairing technique using ultra-high performance fiber reinforcement concrete (UHPFRC) overlay is assessed experimentally with a wheel-type loading set-up as well as analytically based on finite element method (FEM) using a crack bridging degradation concept. In both approaches, an original RC slab is firstly preloaded to achieve a partly damaged RC slab which is then repaired with UHPFRC overlay and reloaded. The results indicate that the developed analytical method can predict the experimental fatigue behaviors including displacement evolutions and crack patterns reasonably well. In addition, as the shear stress in the concrete/UHPFRC interface stays relatively low over the calculations, this interface can be simply simulated as perfect. Moreover, superior to the experiments, the numerical method provides fatigue behaviors of not only the repaired but also the unrepaired RC slabs. Due to the high strengths and cracking resistance of UHPFRC, the repaired slab exhibited a decelerated deterioration rate and an extended fatigue life compared with the unrepaired slab. Therefore, the proposed repairing scheme can afford significant strengthen effects and act as a reference for future practices and engineering applications.

A review and analysis of circular UHPC filled steel tube columns under axial loading

  • Hoang, An Le;Fehling, Ekkehard
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.417-430
    • /
    • 2017
  • Ultra high performance concrete (UHPC) has aroused interest around the world owing to superior mechanical and durability properties over conventional concrete. However, the application of UHPC in practice poses difficulties due to its inherent brittleness. UHPC filled in steel tube columns (UHPC-FSTCs) are capable of restricting the brittle failure of non-reinforced UHPC columns and forming a high performance member with enhancement of strength and ductility. Currently, research on UHPC-FSTCs remains very limited and there is relatively little information about the mechanical behavior of these columns. Therefore, this study presents a review of past experimental studies to have a deeper insight into the compressive behavior of UHPC-FSTCs under axial loading on entire section and on concrete core. Based on the test results obtained from Schneider (2006) and Xiong (2012), an analysis was conducted to investigate the influence of the confinement index (${\xi}$) and diameter to steel tube thickness ratio (D/t) on the strength and the ductility in short circular UHPC-FSTCs. Furthermore, the appropriateness of current design codes including EC4, AISC, AIJ and previous analytical models for estimating the ultimate loads of composite columns was also examined by the comparison between the predictions and the test results. Finally, simplified formulae for predicting the ultimate loads in two types of loading pattern were proposed and verified.

Assessment of stress-strain model for UHPC confined by steel tube stub columns

  • Hoang, An Le;Fehling, Ekkehard
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.371-384
    • /
    • 2017
  • Ultra high performance concrete (UHPC) has recently been applied as an alternative to conventional concrete in construction due to its extremely high compressive and tensile strength, and enhanced durability. However, up to date, there has been insufficient information regarding the confinement behavior of UHPC columns. Therefore, this study aims to perform an assessment of axial stress-strain model for UHPC confined by circular steel tube stub columns. The equations for calculating the confined peak stress and its corresponding strain of confined concrete in existing models suggested by Johansson (2002), Sakino et al. (2004), Han et al. (2005), Hatzigeorgiou (2008) were modified based on the regression analysis of test results in Schneider (2006) in order to increase the prediction accuracy for the case of confined UHPC. Furthermore, a new axial stress-strain model for confined UHPC was developed. To examine the suitability of the modified models and the proposed model for confined UHPC, axial stress-strain curves derived from the proposed models were compared with those obtained from previous test results. After validating the proposed model, an extensive parametric study was undertaken to investigate the effects of diameter-to-thickness ratio, steel yield strength and concrete compressive strength on the complete axial stress-strain curves, the strength and strain enhancement of UHPC confined by circular steel tube stub columns.

Spalling Reduction Method of High Strength Reinforced Concrete Columns Using Fibers (섬유를 활용한 고강도 콘크리트기둥의 폭렬제어방안)

  • Yoo, Suk-Hyeong
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.7-12
    • /
    • 2009
  • As the concrete strength increases the degree of damage caused by the spalling becomes more serious because of the permeability. It is reported that the polypropylene (PP) fiber has an important role in protecting concrete from spalling. However, the excessive usage of PP fiber would not useful in spalling control and would decrease the workability of ultra high strength concrete. The high-temperature behaviors of high-strength reinforced concrete columns with various dosage of PP fibers and three types of fire endurance fibers were observed this study. In results, the ratio of unstressed residual strength of columns, in case of concrete strength 60MPa, increases as the dosage of PP fiber increases from 0% to 0.2%, however, the effect of fiber dosage on residual strength of column barely changes above 0.2% and in case of concrete strength 120MPa, PVA fiber is the most suitable fire endurance fiber in accounting fire endurance performance and workability.

Construction Example on the Interior and Exterior of Building utilizing UHPC for Premix Type Room Temperature Curing (프리믹스형 상온양생용 UHPC를 활용한 건축물 내·외장 시공 사례)

  • Choi, Byung-Keol;Yoon, Ju-Yong;Ko, Hyo-Jin;Park, Yong-Kyu;Yoon, Gi-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.143-144
    • /
    • 2019
  • This study introduces the production and construction of building interior and exterior materials using UHPC for premix type room temperature curing developed through advance research and development.

  • PDF

Simplification of the Flexural Capacity of SFR-UHPCC Rectangular Beam

  • Han, Sang-Mook;Wu, Xiang-Guo;Kim, Sung-Wook;Kang, Su-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.526-529
    • /
    • 2006
  • In this paper, flexure behavior of steel fiber reinforcement ultra high performance cementations composites (SFR-UHPCC) has been analyzed by equivalent stress block. Pulling-out tensile force of steel fiber with concrete matrix was induced. An appropriate flexure evaluation formula, i.e. semi-analytical formula, was established based on rectangular cross section beam for comparing with shear capacity and ultimate load of SFR-UHPCC beam. Finally, the semi-analytical formula has been simplified for the convenience of design work. Experimental results and theoretical shear strength are shown to compare with the formula proposed by this paper. The theory formula has a good prediction of failure type of SFR-UHPCC.

  • PDF

Evaluation of Advanced Ductility of Ultra High Performance Concrete with Hybrid type of Steel Fiber (하이브리드 강섬유 사용에 따른 초고성능 콘크리트의 인성 향상 평가)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Kang, Hyun-Jin;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.437-438
    • /
    • 2010
  • This study was carry out to evaluate the effect of flexural behavior according to using hybrid steel fiber in UHPC. The evaluation of the flexural behavior of UHPC using hybrid fibers showed that the admixing of hybrid steel fibers at a volumic ratio of 2% increased the flexural strength by more than 27% (maximum 50%) compared to the use of steel fibers only. A ratio of 1.5% was seen to provide flexural strength exceeding the current strength of UHPC.

  • PDF

Shear strength prediction for SFRC and UHPC beams using a Bayesian approach

  • Cho, Hae-Chang;Park, Min-Kook;Hwang, Jin-Ha;Kang, Won-Hee;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.503-514
    • /
    • 2020
  • This study proposes prediction models for the shear strength of steel fiber reinforced concrete (SFRC) and ultra-high-performance fiber reinforced concrete (UHPC) beams using a Bayesian parameter estimation approach and a collected experimental database. Previous researchers had already proposed shear strength prediction models for SFRC and UHPC beams, but their performances were limited in terms of their prediction accuracies and the applicability to UHPC beams. Therefore, this study adopted a statistical approach based on a collected database to develop prediction models. In the database, 89 and 37 experimental data for SFRC and UHPC beams without stirrups were collected, respectively, and the proposed equations were developed using the Bayesian parameter estimation approach. The proposed models have a simplified form with important parameters, and in comparison to the existing prediction models, provide unbiased high prediction accuracy.