• 제목/요약/키워드: Ultimate resistance force

검색결과 49건 처리시간 0.024초

양단정착형 쏘일네일링의 인발특성 (Pullout Characteristics of End Fixed Nails)

  • 이봉직;김조순;이종규
    • 한국지반환경공학회 논문집
    • /
    • 제8권4호
    • /
    • pp.5-11
    • /
    • 2007
  • 양단정착형 네일의 인발력을 평가하기 위하여 여러 조건에 대한 현장실험을 실시하였다. 현장인발시험은 연암, 풍화암 및 토사지반를 대상으로 인발력, 변위 및 그라우트와 네일의 마찰력 등을 측정하였으며, 이의 결과를 동일 조건에서 실시된 일반네일의 시험결과와 비교하였다. 시험결과 한계인발력은 양단정착형네일이 일반네일에 비하여 토사지반에서는 2배 이상, 풍화암에서는 약 1.6배 큰 것으로 분석되었으며, 단위길이당 주면마찰력도 양단정착형네일이 일반네일에 비하여 약 1.8~3배정도 증대되는 효과가 있는 것으로 분석되었다. 또한, 네일종류에 따른 하중전이특성 분석결과 양단정착형네일의 경우에는 변위는 작고, 네일 전 길이에 걸쳐 하중을 균등하게 부담함을 알 수 있다.

  • PDF

A LSTM-based method for intelligent prediction on mechanical response of precast nodular piles

  • Chen, Xiao-Xiao;Zhan, Chang-Sheng;Lu, Sheng-Liang
    • Smart Structures and Systems
    • /
    • 제30권2호
    • /
    • pp.209-219
    • /
    • 2022
  • The determination for bearing capacity of precast nodular piles is conventionally time-consuming and high-cost by using numerous experiments and empirical methods. This study proposes an intelligent method to evaluate the bearing capacity and shaft resistance of the nodular piles with high efficiency based on long short-term memory (LSTM) approach. A series of field tests are first designed to measure the axial force, shaft resistance and displacement of the combined nodular piles under different loadings, in comparison with the single pre-stressed high-strength concrete piles. The test results confirm that the combined nodular piles could provide larger ultimate bearing capacity (more than 100%) than the single pre-stressed high-strength concrete piles. Both the LSTM-based method and empirical methods are used to calculate the shift resistance of the combined nodular piles. The results show that the LSTM-based method has a high-precision estimation on shaft resistance, not only for the ultimate load but also for the working load.

비선형회귀분석을 이용한 가압식 쏘일네일링의 극한인발저항력 판정 (Estimation of Ultimate Pullout Resistance of Soil-Nailing Using Nonlinear)

  • 박현규;이강일
    • 한국지반신소재학회논문집
    • /
    • 제15권2호
    • /
    • pp.65-75
    • /
    • 2016
  • 본 연구에서는 최근 적용사례가 급증하고 있는 가압식 그라우팅을 이용한 쏘일네일링의 현장인발시험 자료를 수집하여 데이터베이스를 구성하였으며, 기존의 도해법을 이용한 극한인발저항력 판정법의 문제점을 보완하기 위하여 비선형회귀분석을 이용하여 극한인발저항력을 판정하는 방법을 제안하였다. 비선형회귀분석에 의해 추정된 하중-변위곡선은 현장인발시험 자료와 매우 높은 상관성을 보였으며, 도해법에 의해 판정된 극한인발하중에 비해 평균 29% 정도 크게 판정되었다. 쏘일네일의 하중-변위곡선이 항복하중 이후에 급격한 변위를 보이는 경우에는 S자 성장곡선 회귀모형이 가장 적합하며, 인발하중과 변위의 증가량이 점진적으로 감소하는 파괴거동을 보이는 하중-변위곡선은 점근적 방법이 가장 적합한 회귀모형으로 평가되었다. 본 연구로부터 제안된 단위극한주면 마찰 저항력은 국내 지반특성과 가압식 그라우팅 공법의 특성이 반영된 것으로 해외 연구결과로부터 제시된 설계도표를 이용하던 문제점을 개선함으로써 독자적인 설계기준을 확보하는데 기여할 수 있을 것으로 기대된다.

Experimental Study on Seismic Behavior of Roof Joint

  • Cui, Yao;Gao, Xiaoyu;Liu, Hongtao;Yamada, Satoshi
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1373-1383
    • /
    • 2018
  • Experimental study was conducted to investigate the seismic behavior of roof joint. Eight full-scale specimens were tested considering the effects of axial force, joint height, hole shape of base plate and edge distance of concrete on the failure mode and resistance capacity of roof joint. With the increase of axial force, the hysteretic curves were fuller. The mechanical model of roof joint change from bending to shear. With the increase of joint height, the ultimate strength of roof joint decreased. If the hole shape of base plate changed from circle to loose, the slip behavior of roof joint appeared and the ultimate strength of roof joint decreased. The damage of edge concrete may occur if the edge distance of concrete was not big enough.

결합강그리드보강재의 특성 및 적용 (Charateristics of the Jointed Steel-Grid Reinforcement and the Application)

  • 한중근
    • 한국환경복원기술학회지
    • /
    • 제5권3호
    • /
    • pp.15-22
    • /
    • 2002
  • To analysis of the embanked slope stability using a jointed reinforcement, the internal stability and the external stability have to be satisfied, respectively. But, because the lengths of ready-made steel-grid were limited, the reinforcements must be connecting themselves to the reinforcing. In this study, the mechanical test was carried out to investigate the tensile failure and the pullout failure at the joint parts of them, which was based on the analysis of reinforced slope in field. Through the tensile tests in mid-air for the jointed steel-grid, the deformation behavior was seriously observed as follows : deformation of longitudinal member, plastic deformation of longitudinal member and of crank part. Those effects were due to the confining pressure and overburden pressure of the surrounding ground. The bearing resistance at jointed part of jointed steel-grid was due to the latter only. The maximum tensile forces were higher about 20kN~27kN than ultimate pullout resistance, but, the results of those was almost the same in mid-soil. The failures of steel-grid occurred at welded point both of longitudinal members and transverse members and of jointed parts. The strength of jointed parts itself got pullout force about 20kN, which was about 65% for ultimate pullout force of the longitudinal members N=2. To the stability analysis of reinforced structure including the reinforced slope, the studying of connection effects at jointed part of reinforcement members must be considered. Through the results of them, the stability of reinforced structures should be satisfied.

비탈면에 적용된 다구근 앵커의 보강효과 연구 (A Study On The Reinforcing Effect Multibell Anchor Applied To The Cut Slope)

  • 차경섭;김선주;김태훈
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.1286-1293
    • /
    • 2010
  • The ground anchor used in domestic area, which resists by adhesion between anchor body and the ground to the external force, seems not to be adequate for soft ground and urban area where the boundary between structures is close because the ground is disturbed and lost its strength during boring. In order to overcome such a shortcoming an expanded anchor system has been developed. The ground expansion is accomplished by means of Pulse Discharge Technology. In this technology, a high voltage of electricity is stored and discharged in milliseconds which induces high pressure acting on the ground. By making a couple of bulbs, a passive resistance as well as shaft resistance are mobilized, and therefore a higher pullout resistance comparing existing ground anchors is developed.In this study, a couple of full scale tests were conducted in order to figure out how much the resistance of an expanded anchor increases comparing to the straight. As a result, it was found that a remarkable increase in ultimate pullout capacity is observed for the soft ground and as the number of bulb increases. In addtion, as a result of applying to a cut slope reinforcement, it appeared that the length of fixed zone of anchor can be reduced effectively.

  • PDF

침하가 예측되는 지반에서 강관말뚝 주면 마찰 저항에 따른 말뚝의 거동 분석 (Analysis of Pile Behaviors with Friction Resistance of Skin of Steel Pipe Pile in Ground where Settlement is Predicted)

  • 이기철;신세희;이학린;김동욱
    • 한국지반공학회논문집
    • /
    • 제36권11호
    • /
    • pp.107-117
    • /
    • 2020
  • 개단 강관말뚝의 경우 일반적으로 말뚝에 작용하는 외부 주면 마찰력뿐만 아니라 설치과정에서 폐색된 흙이 강관 내부에 작용하는 내부 마찰저항이 존재한다. 내·외부 저항에 따라 극한하중의 변화가 예상되며, 말뚝이 시공된 지반이 점성토일 경우 지반 침하로 유발되는 부주면 마찰력에도 영향을 끼칠 것으로 판단된다. 따라서 본 연구에서는 강관말뚝 내·외부 저항 특성에 따른 거동을 수치해석적으로 분석하고자 하며, 지반 침하 발생 전·후의 마찰력 분포, 축력, 침하량을 산정하였다. 해석 결과, 내부 마찰 저항은 외부 마찰 저항보다 적은 영향을 미쳤지만 전체적인 말뚝 거동에 끼치는 영향을 고려하였을 때, 중요한 요소 중 하나이며 설계 시 두 가지 저항요소를 고려할 필요가 있을 것으로 판단된다.

고강도 콘크리트의 부착거동에 관한 실험적 연구 (The Experimental Study on the Bond behavior of High strength concrete)

  • 이준구;김우;박광수;김대중;이응찬;김한중
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.774-780
    • /
    • 1999
  • The study of bond behavior between concrete and rebar has been performed for a long time. On this study, we tried to analysed variation of bond behaviors quantitatively with varying the strength of concrete. Bond stress which observed below the neutral surface of beam and at connecting part of beam and column is affected by various bond parameters. Resistance of deformed bars which embedded in concrete to the pullout force is divided 1) chemical adhesive force 2) frictional force 3) mechanical resistance of ribs to the concrete and these horizontal components of resistance is being bond strength. We selected the most common and typical variable which is concrete strength among various variables. So we used two kinds of concrete strength like as 25MPa(NSC) and 65MPa(HSC). Tension Test was performed to verify how bond behavior varied with two kinds of concrete strength. Concentration of bond stress was observed at load-end commonly in Tension Test of the initial load stage. At this stage stress distribution was almost coincident at each strength. As tension load added, this stress distribution had difference gradually and movement of pick point of bond stress to free-end and central section was observed. This tendency was observed at first and moving speed was more fast in NSC. At the preceeding result the reason of this phenomenon is considered to discretion of chemical adhesion and local failure of concrete around rebar in load-end direction. Especially, when concrete strength was increased 2.6 times in tension test, ultimate bond strength was increased 1.45 times. In most recent used building codes, bond strength is proportioned to sqare root of concrete compressive strength but comparison of normalized ultimate bond strength was considered that the higher concrete strength is, the lower safety factor of bond strength is in each strength if we use existing building codes. In Tension Test, in case of initial tensile force state, steel tensile stress of central cross section is not different greatly at each strength but tensile force increasing, that of central cross section in NSC was increased remarkably. Namely, tensile force which was shared in concrete in HSC was far greater than that of concrete in NSC at central section.

  • PDF

매입말뚝의 인발저항특성에 관한 연구 (Analytical Study on the Pullout Resistance Characteristics of Bored Pile)

  • 박종배;천영수
    • 토지주택연구
    • /
    • 제7권4호
    • /
    • pp.281-289
    • /
    • 2016
  • 압축 부재인 PHC 말뚝(직경 600mm)도 강선의 부착력을 높이면 83.6~91.6tonf의 극한 인장력에 대해 구조적으로 저항할 수 있는 것으로 실험결과 나타났다. 이러한 시험결과에 안전율을 고려하여 적절한 허용값을 제시하면 부상방지 앵커를 대체하거나 절감시킬 수 있는 것으로 기대되었다. 이를 위해서는 구조적 인장성능과 함께 실제 지반에 시공된 매입말뚝의 인발저항 거동이 규명되어야 한다. 본 연구에서는 현장에 시공된 실제 매입말뚝의 인발거동 특성을 파악하기 위하여 정적 인발재하시험을 실시하여 주면마찰력 산정식과 비교하였다. 또한, 간편하게 인발저항력을 평가하기 위하여 PDA를 이용한 동재하시험을 실시하여 정적 인발재하시험 결과와 비교하였다. 그 결과, 매입말뚝의 시멘트풀이 충분히 경화한 후인 15일 후에는 LH 주면마찰력 산정식의 마찰력과 정적인발재하시험결과가 잘 일치하였고 동재하시험에서 구한 마찰력과도 비교적 잘 일치하는 것으로 나타났다.

Buckling resistance, bending stiffness, and torsional resistance of various instruments for canal exploration and glide path preparation

  • Kwak, Sang-Won;Ha, Jung-Hong;Lee, WooCheol;Kim, Sung-Kyo;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • 제39권4호
    • /
    • pp.270-275
    • /
    • 2014
  • Objectives: This study compared the mechanical properties of various instruments for canal exploration and glide-path preparations. Materials and Methods: The buckling resistance, bending stiffness, ultimate torsional strength, and fracture angle under torsional load were compared for C+ file (CP, Dentsply Maillefer), M access K-file (MA, Dentsply Maillefer), Mani K-file (MN, Mani), and NiTiFlex K-file (NT, Dentsply Maillefer). The files of ISO size #15 and a shaft length of 25 mm were selected. For measuring buckling resistance (n = 10), the files were loaded in the axial direction of the shaft, and the maximum load was measured during the files' deflection. The files (n = 10) were fixed at 3 mm from the tip and then bent $45^{\circ}$ with respect to their long axis, while the bending force was recorded by a load cell. For measuring the torsional properties, the files (n = 10) were also fixed at 3 mm, and clockwise rotations (2 rpm) were applied to the files in a straight state. The torsional load and the distortion angle were recorded until the files succumbed to the torque. Results: The CP was shown to require the highest load to buckle and bend the files, and the NT showed the least. While MA and MN showed similar buckling resistances, MN showed higher bending stiffness than MA. The NT had the lowest bending stiffness and ultimate torsional strength (p < 0.05). Conclusions: The tested instruments showed different mechanical properties depending on the evaluated parameters. CP and NT files were revealed to be the stiffest and the most flexible instruments, respectively.