• Title/Summary/Keyword: Ultimate pressure capacity

Search Result 84, Processing Time 0.019 seconds

A Study on the Estimation of Ultimate Bearing Capacity of Granular Group Piles (조립토 군말뚝의 극한지지력 평가에 관한 연구)

  • 김홍택;강인규
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.143-162
    • /
    • 1998
  • In the present study, a procedure to predict the depth from the ground surface to the center of bulging failure zone in each of the square granular group piles under a rigid mat foundation is proposed. This analytical procedure is established on the basis of the conical modeling of bulging failure shape and the replacement ratio of soft foundation soils. considering the effect of a share of procedure to estimate the ultimate cylindrical pressure in the area reinforced with granular piles and the ultimate bearing capacity of each of granular piles in group. This analytical procedure is also established on the basis of the pre-determined depth to the zone of bulging failure and an iterative solution technique. Finally the analytical procedures proposed in this study are verified by analyzing the results of 3D finite element analyses, and the predictions of ultimate bearing capacity of granular piles are compared with the results obtained from the tests, empirical equation and 3D finite element analyses.

  • PDF

Evaluation of Ultimate Pressure Capacity of Wolsong Containment Structure (월성 원자력발전소 격납건물의 극한내압평가)

  • Kwak Hyo-Gyoung;Kim Jae Hong;Kim Sun-Hoon;Chung Yun-Suk
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.183-189
    • /
    • 2005
  • Nuclear containment structure is the last barrier for being secure from any nuclear power plant accident. Even though the safety requirements of nuclear power plant have been focused on removing accidental situations, nuclear containment structure must reserve the sufficient resisting capacity to any accident because it works as the last barrier. The acceptable nuclear containment structure makes possible to limit the effect of internal accidents and to avoid radioactive release. In this study, to conduct the numerical analysis for the structural safety of a containment structure, loss of coolant accident (LOCA) is considered as the basic accidental load, and Wolsong containment structure is considered as a target structure. The CANDU containment structure, such as Wolsong containment structure, is a prestressed concrete shell structure which has dome and is reinforced with bonded tendons. The evaluation of ultimate pressure capacity was conducted by nonlinear analysis of a prestressed concrete containment structure.

  • PDF

A Study on the Lateral Flow of the Silts which is Polluted with a Garbage Leachate to the Dyes (쓰레기 침출수와 염료로 오염된 실트지반의 측방유동에 관한 연구)

  • Ahn, Jong-Pil;Park, Sang-Bum;Ahn, Ki-Mun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1157-1166
    • /
    • 2008
  • Critical surcharge value of silt ground polluted with garbage leachate to the dyes $q_{cr}=3.73c_u$ and ultimate bearing capacity value $q_{ult}=8.60c_u$. Lateral flow pressure at polluted silt ground was about $P_{max}$/3 and depth of maximum lateral flow pressure was found at that of H/3 of soft layer thickness(H). Expression of polluted silt ground of fracture baseline at stability control charge by Matsuo Kawamura is $S_v=3.56\exp\{0.51(Y_m/S_v)\}$.

  • PDF

Estimation of Ultimate Lateral Load Capacity Using CPT Results Considering Lateral Soil Pressure Distribution (수평토압분포를 고려한 CPT 기반의 말뚝극한수평지지력 산정)

  • Kim, Min-Kee;Kyung, Doo-Hyun;Hong, Jung-Moo;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.2
    • /
    • pp.37-44
    • /
    • 2009
  • In this study, estimation methodology for the pile of ultimation lateral resistance, pu, and ultimate lateral capacity, Pu, is based on the CPT cone resistance $q_c$. Preexistent methodologies for ultimate lateral resistance and ultimate lateral capacity have been generally represented with relative density, vertical effective stresses, and various $K_0$ values which are important for analyzing sandy soil. These methodologies, however, did not consider the horizontal effective stress and the effects of construction site conditions. Therefore, CPT-based methodology for the estimation of the ultimate lateral pile load capacity Hu was proposed. Calibration chamber test results were analyzed and compared with calculated results. The proposed estimation methodology for the pile of $p_u$ can be effectively utilized as alternative to preexistent methods.

ANALYSIS OF PRESTRESSED CONCRETE CONTAINMENT VESSEL (PCCV) UNDER SEVERE ACCIDENT LOADING

  • Noh, Sang-Hoon;Moon, Il-Hwan;Lee, Jong-Bo;Kim, Jong-Hak
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.77-86
    • /
    • 2008
  • This paper describes the nonlinear analyses of a 1:4 scale model of a prestressed concrete containment vessel (PCCV) using an axisymmetric model and a three-dimensional model. These two models are refined by comparison of the analysis results and with testing results. This paper is especially focused on the analysis of behavior under pressure and the temperature effects revealed using an axisymmetric model. The temperature-dependent degradation properties of concrete and steel are considered. Both geometric and material nonlinearities, including thermal effects, are also addressed in the analyses. The Menetrey and Willam (1995) concrete constitutive model with non-associated flow potential is adopted for this study. This study includes the results of the predicted thermal and mechanical behaviors of the PCCV subject to high temperature loading and internal pressure at the same time. To find the effect of high temperature accident conditions on the ultimate capacity of the liner plate, reinforcement, prestressing tendon and concrete, two kinds of analyses are performed: one for pressure only and the other for pressure with temperature. The results from the test on pressurization, analysis for pressure only, and analyses considering pressure with temperatures are compared with one another. The analysis results show that the temperature directly affects the behavior of the liner plate, but has little impact on the ultimate pressure capacity of the PCCV.

Nonlinear Finite Element Analysis of Containment Vessel by Considering the Tension stiffening Effect

  • Lee, Hong-Pyo;Choun, Young-Sun;Seo, Jeong-Moon;Shin, Jae-Chul
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.512-527
    • /
    • 2004
  • This paper describes the finite element (FE) analysis results of a 1/4 scale model of a prestressed concrete containment vessel (PCCV) by considering the tension stiffening effect, which is a result of the bond effect between the concrete and the steel. The tension stiffening model is assumed to be an exponential form based on the relationship between the average stress and the average strain of the concrete. The objective of the present FE analysis is to evaluate the ultimate internal pressure capacity of the PCCV, as well as its failure mechanism, when the PCCV model is subjected to a monotonous internal pressure beyond is design pressure capacity. With the commercial code ABAQUS, the FE analysis used two concrete failure criteria: a 2-dimensional axi-symmetric model with modified Drucker-Prager failure criteria and a 3-dimensional model with a damaged plasticity mod디. The results of our FE analysis on the ultimate pressure capacity and failure modes of PCCV have a good agreement with the experimental data.

Prediction of ultimate load capacity of concrete-filled steel tube columns using multivariate adaptive regression splines (MARS)

  • Avci-Karatas, Cigdem
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.583-594
    • /
    • 2019
  • In the areas highly exposed to earthquakes, concrete-filled steel tube columns (CFSTCs) are known to provide superior structural aspects such as (i) high strength for good seismic performance (ii) high ductility (iii) enhanced energy absorption (iv) confining pressure to concrete, (v) high section modulus, etc. Numerous studies were reported on behavior of CFSTCs under axial compression loadings. This paper presents an analytical model to predict ultimate load capacity of CFSTCs with circular sections under axial load by using multivariate adaptive regression splines (MARS). MARS is a nonlinear and non-parametric regression methodology. After careful study of literature, 150 comprehensive experimental data presented in the previous studies were examined to prepare a data set and the dependent variables such as geometrical and mechanical properties of circular CFST system have been identified. Basically, MARS model establishes a relation between predictors and dependent variables. Separate regression lines can be formed through the concept of divide and conquers strategy. About 70% of the consolidated data has been used for development of model and the rest of the data has been used for validation of the model. Proper care has been taken such that the input data consists of all ranges of variables. From the studies, it is noted that the predicted ultimate axial load capacity of CFSTCs is found to match with the corresponding experimental observations of literature.

Nonlinear Finite Element Analysis for Ultimate Hull Girder Strength of Container Ship (컨테이너선의 최종 종강도 평가를 위한 비선형 유한요소 해석의 적용)

  • Yeom, Cheol Wung;Moon, Jeong Woo;Nho, In Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.349-355
    • /
    • 2015
  • Through the recent accident, the checking of ultimate hull girder capacity for container ship should be needed. Smith’s method is well known as the only simplified method to access rapidly for ultimate hull girder capacity except very expensive nonlinear F.E approach. This simplified method, however, is admitted to apply only to bulker and tanker in accordance with Classification Rules up to now. The targets of this study are to verify effectiveness of the simplified method for container ship’s ultimate hull girder strength and to propose the safety factor considering the local bending in double bottom structures due to out of plane loads through the nonlinear F.E analyses. Two different sized ships and three loading conditions which are pure bending, homo-loading and one-bay empty condition were used for this study. Based on the F.E results, the present study showed that CSR’s simplified method is available for the ultimate hull girder strength of container ship and over 1.2 of safety factor should be applied to consider the local bending effect in double bottom structures due to out of plane loads such as sea pressure an cargo.

Analytical behavior of built-up square concrete-filled steel tubular columns under combined preload and axial compression

  • Wang, Jian-Tao;Wang, Fa-Cheng
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.617-635
    • /
    • 2021
  • This paper numerically investigated the behavior of built-up square concrete-filled steel tubular (CFST) columns under combined preload and axial compression. The finite element (FE) models of target columns were verified in terms of failure mode, axial load-deformation curve and ultimate strength. A full-range analysis on the axial load-deformation response as well as the interaction behavior was conducted to reveal the composite mechanism. The parametric study was performed to investigate the influences of material strengths and geometric sizes. Subsequently, influence of construction preload on the full-range behavior and confinement effect was investigated. Numerical results indicate that the axial load-deformation curve can be divided into four working stages where the contact pressure of curling rib arc gradually disappears as the steel tube buckles; increasing width-to-thickness (B/t) ratio can enhance the strength enhancement index (e.g., an increment of 1.88% from B/t=40 to B/t=100), though ultimate strength and ductility are decreased; stiffener length and lip inclination angle display a slight influence on strength enhancement index and ductility; construction preload can degrade the plastic deformation capacity and postpone the origin appearance of contact pressure, thus making a decrease of 14.81%~27.23% in ductility. Finally, a revised equation for determining strain εscy corresponding to ultimate strength was proposed to evaluate the plastic deformation capacity of built-up square CFST columns.