• Title/Summary/Keyword: Ultimate Pullout Capacity

Search Result 36, Processing Time 0.023 seconds

Pull-out Test of Pulse Powered Underreamed Anchors (펄스방전 확공형 앵커의 현장시험)

  • Kim, Nak-Kyung;Ju, Yonh-Sun;Kim, Sung-Kyu;Seo, Hyo-Kyun;Kim, Tae-Hun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1014-1021
    • /
    • 2008
  • Ground anchor should not be used in soft clay, because anchor resistance can not be guaranteed. However, there is a way to increase the capacity of anchors. The pulse powered anchor is an underreamed anchor by using high voltage electrokinetic pulse energy. In this paper, conceptual introduction of the pulse powered anchor was presented. Anchor pull-out tests were performed at the Geotechnical Experimentation Site at Sungkyunkwan University in Suwon, Korea. Data were analyzed in order to verify the performance of pulse powered anchors.

  • PDF

Uplift Capacity Estimation of Bond-type Rock Anchors Based on Full Scale Field Tests (실규모 현장시험을 통한 부착형 암반앵커의 인발저항력 평가)

  • Kim, Dae-Hong;Oh, Gi-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.5-15
    • /
    • 2009
  • This paper presents the results of full-scale uplift load tests performed on 24 passive anchors grouted to various lengths at Okchun and Changnyong site. Rock anchors were installed over a wide range of rock types and qualities with a fixed anchored depth of 1~6 m. The majority of installations used D51 mm high grade steel rebar to induce rock failure prior to rod failure. However, a few installations included the use of D32 mm rebar at relatively deeper anchored depth so as to induce rod failure. In many tests, rock failure was reached and the ultimate loads were recorded along with observations of the shape and extent of the failure surface. In addition to field tests, laboratory pullout tests were conducted to determine bond strength and bond stress-shear slip relation at the tendon/grout interface when a corrosion protection sheath is installed in the cement-based grout. The test results show that the ultimate tendon-grout bond strength is measured from 18~25% of unconfined compressive strength of grout. One of the important results from these tests is that the measured strains along the corrosion protection sheath were so small that practically the reduction of bond strength by the presence of sheath would be negligible.

Performance evaluation of different shapes of headed bars in steel fiber reinforced concrete

  • Sachdeva, Payal;Danie Roy, A.B.;Kwatra, Naveen
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.387-396
    • /
    • 2021
  • The behavior of headed bars in concrete is investigated through 108 pullout tests having an embedment depth of eight times the bar diameter in the M20 concrete mix. Headed bars are designed based on ASTM A970-16 and ACI 318-19 recommendations. The primary parameters used in this study are the steel bar diameter, the steel fibers percentage, and the head shapes. Three failure modes namely, Steel, Concrete-Blowout & Pull-Through failure have been observed. Based on load-deflection curves which are plotted to investigate the bond capacity of headed bars, it is observed that the circular-headed bars have displayed the highest peak load. The comparative analysis shows the smaller differences in the ultimate bond strength between MC2010 (0.89-2.26 MPa) and EN 1992-1-1 (2.32 MPa) as compared to ACI-318-19 (11-22 MPa) which is due to the absence of embedment depth and peak load factor in MC2010 and EN 1992-1-1 respectively.

Uplift response of multi-plate helical anchors in cohesive soil

  • Demir, Ahmet;Ok, Bahadir
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.615-630
    • /
    • 2015
  • The use of helical anchors has been extensively beyond their traditional use in the electrical power industry in recent years. They are commonly used in more traditional civil engineering infrastructure applications so that the advantages of rapid installation and immediate loading capability. The majority of the research has been directed toward the tensile uplift behaviour of single anchors (only one plate) by far. However, anchors commonly have more than one plate. Moreover, no thorough numerical and experimental analyses have been performed to determine the ultimate pullout loads of multi-plate anchors. The understanding of behavior of these anchors is unsatisfactory and the existing design methods have shown to be largely inappropriate and inadequate for a framework adopted by engineers. So, a better understanding of helical anchor behavior will lead to increased confidence in design, a wider acceptance as a foundation alternative, and more economic and safer designs. The main aim of this research is to use numerical modeling techniques to better understand multi-plate helical anchor foundation behavior in soft clay soils. Experimental and numerical investigations into the uplift capacity of helical anchor in soft clay have been conducted in this study. A total of 6 laboratory tests were carried out using helical anchor plate with a diameter of 0.05 m. The results of physical and computational studies investigating the uplift response of helical anchors in soft clay show that maximum resistances depend on anchor embedment ratio and anchor spacing ratio S/D. Agreement between uplift capacities from laboratory tests and finite element modelling using PLAXIS is excellent for anchors up to embedment ratios of 6.

Pullout Behavior Characteristics of Enlarged Cylinder Type Anchor Using Numerical Analysis (수치해석을 이용한 확공형 앵커의 인발거동 특성)

  • Moon, Joon-Shik;Lee, Min-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.113-118
    • /
    • 2017
  • Numerical analysis was carried out using a finite element analysis program to analyze the behavior characteristics of enlarged cylinder type anchor. It was found that the ultimate resistance of enlarged cylinder type anchor increases with the enlargement angle from numerical analysis for various enlargement angle cases. In the case of $30-60^{\circ}$ of enlargement angle, the deformation and stress distribution characteristics in anchor are similar regardless of enlargement angle. However, when the same tensile force is applied, there is a difference in the degree of frictional resistance because of difference of displacement of top of grouting zone. Also, it was found that the maximum compressive force and tensile force were generated at the cone of the upper portion of the grouting zone, and tensile fracture of the upper grouting portion is likely to occur.

Comparative field tests on uplift behavior of straight-sided and belled shafts in loess under an arid environment

  • Qian, Zeng-zhen;Lu, Xian-long;Yang, Wen-zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.141-160
    • /
    • 2016
  • This study elucidates the uplift behaviors of the straight-sided and belled shafts. The field uplift load tests were carried out on 18 straight-sided and 15 belled shafts at the three collapsible loess sites under an arid environment on the Loess Plateau in Northwest China. Both the site conditions and the load tests were documented comprehensively. In general, the uplift load-displacement curves of the straight-sided and belled shafts approximately exhibited an initial linear, a curvilinear transition, and a final linear region, but did not provide a well defined peak or asymptotic value of the load, and therefore their uplift resistances should be interpreted from the load test results using an appropriate criterion. Nine representative uplift resistance interpretation criteria were used to define the "interpreted failure load" for each of the load tests, and all of these interpreted uplift resistances were normalized by the failure threshold, $T_{L2}$, obtained using the $L_1-L_2$ method. These load test data were compared statistically and graphically. For the straight-sided and belled shafts, the normalized uplift load-displacement curves were respectively established by the plots that related the mean interpreted uplift resistance ratio against the mean displacement at the corresponding interpreted criteria, and the comparisons of the normalized load-displacement curves were made. Specific recommendations for the designs of uplift belled and straight-sided shafts in the loess were given, in terms of both capacity and displacement.