• Title/Summary/Keyword: Ultimate Pressure

Search Result 270, Processing Time 0.032 seconds

A 3-D Finite Element Model For R/C Structures Based On Orthotropic Hypoelastic Constitutive Law

  • Cho, Chang-Geun;Park, Moon-Ho
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • Based on the orthotropic hypoelasticity formulation, a constitutive material model of concrete taking account of triaxial stress state is presented. In this model, the ultimate strength surface of concrete in triaxial stress space is described by the Hsieh's four-parameter surface. On the other hand, the different ultimate strength surface of concrete in strain space is proposed in order to account for increasing ductility in high confinement pressure. Compressive ascending and descending behavior of concrete is considered. Concrete cracking behavior is considered as a smeared crack model, and after cracking, the tensile strain-softening behavior and the shear mechanism of cracked concrete are considered. The proposed constitutive model of concrete is compared with some results obtained from tests under the states of uniaxial, biaxial, and triaxial stresses. In triaxial compressive tests, the peak compressive stress from the predicted results agrees well with the experimental results, and ductility response under high confining pressure matches well the experimental result. The reinforcing bars embedded in concrete are considered as an isoparametric line element which could be easily incorporated into the isoparametric solid element of concrete, and the average stress - average strain relationship of the bar embedded in concrete is considered. From numerical examples for a reinforced concrete simple beam and a structural beam type member, the stress state of concrete in the vicinity of talc critical region is investigated.

  • PDF

An Experimental Study on the Pumping Performance of the Multi-stage Disk-type Drag Pump (다단 원판형 드래그펌프의 배기 성능에 관한 실험적 연구)

  • 권명근;허중식;황영규
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.79-85
    • /
    • 2003
  • Experimental investigations are performed for the rarefied gas flows in a multi-stage disk-type drag pump. The pump considered in the present study consists of grooved rotors and stators. The flow-meter method is adopted to calculate the pumping speed. Compression ratios and pumping speeds for the nitrogen gas are measured under the outlet pressure range of 0.13∼533 Pa. The present experimental data show the leak-limited value of the compression ratio in the molecular transition region. The rotational speed of the pump is 24,000rpm, and nitrogen is used as a test gas. The pumping characteristics of various drag pumps are performed. The inlet pressures are measured for various outlet pressures of the test pump. The ultimate pressures for zero throughput are measured for three-stage, two-stage and single-stage disk-type, respectively.

Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods

  • Ghannadpour, S.A.M.;Shakeri, M.;Barvaj, A. Kurkaani
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.785-802
    • /
    • 2018
  • In this paper, two different computational methods, called Rayleigh-Ritz and collocation are developed to estimate the ultimate strength of composite plates. Progressive damage behavior of moderately thick composite laminated plates is studied under in-plane compressive load and uniform lateral pressure. The formulations of both methods are based on the concept of the principle of minimum potential energy. First order shear deformation theory and the assumption of large deflections are used to develop the equilibrium equations of laminated plates. Therefore, Newton-Raphson technique will be used to solve the obtained system of nonlinear algebraic equations. In Rayleigh-Ritz method, two degradation models called complete and region degradation models are used to estimate the degradation zone around the failure location. In the second method, a new energy based collocation technique is introduced in which the domain of the plate is discretized into the Legendre-Gauss-Lobatto points. In this new method, in addition to the two previous models, the new model named node degradation model will also be used in which the material properties of the area just around the failed node are reduced. To predict the failure location, Hashin failure criteria have been used and the corresponding material properties of the failed zone are reduced instantaneously. Approximation of the displacement fields is performed by suitable harmonic functions in the Rayleigh-Ritz method and by Legendre basis functions (LBFs) in the second method. Finally, the results will be calculated and discussions will be conducted on the methods.

Analysis of Estimation of Ultimate Lateral Capacity of Pile in Multi-Layered Soil Using CPT Results and Proposal of Modified Lateral Earth Pressure (다층조건에서 CPT를 이용한 말뚝의 극한수평지지력 평가 분석 및 수정 수평토압분포 제안)

  • Hong, Jung-Moo;Kyung, Doo-Hyun;Kang, Beong-Joon;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.47-57
    • /
    • 2009
  • In this study, the ultimate lateral load capacity of pile driven into multi-layered soil was estimated using cone penetration test results and a method was proposed to reflect multi-layered soil conditions. For multi-layered specimens prepared with different relative density at different layers, the cone penetration tests and lateral pile load tests were conducted. Based on the test results, measured and estimated values of the ultimate lateral load were compared and analyzed. The estimated results were obtained from the methods proposed by Broms (1964), Petrasovits & Award (1972) and Prasad & Chari (1999). The method was proposed for modifying the earth pressure distribution of Prasad & Chari (1999) to consider multi-layered soil conditions. From the analysis, it was seen that results obtained from the proposed method showed improvement with less data scatter similarly to those obtained from Broms (1964) and Petrasovits & Award (1972)'s methods.

Stress Variation Characteristics of a High-Pressure Hose with Respect to Wire Braid Angle (강선의 편조각도에 따른 고압호스의 응력변화 특성)

  • Kim, H.J.;Koh, S.W.;Kim, B.T.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.71-78
    • /
    • 2005
  • A high-pressure hose includes rebar layers of the synthetic fiber such as nylon or a steel wire to control internal pressure. The hose assembly is manufactured through the swaging process to clamp the hose into the metal fittings. Usually, the hose behavior is affected by the resultant of the longitudinal and circumferential forces produced by the internal pressure. The rebar layers can appear the most ideal rebar effect when they are arranged to the same direction as the resultant force. The braid angle applied in the rebar layers is an important factor in determining ultimate burst pressure and overall hose life. Failure can occur on the contacted parts of a hose with the metal fittings under severe operating conditions such as high pressure and temperature of the inner fluid. In this paper, the mechanical behavior between the hose and the metal fittings during the swaging process and the stress variation characteristics of a high-pressure hose under a constant applied pressure are analyzed with respect to the braid angle of steel wire using the finite element method.

  • PDF

Study of Pressure and Flow in the Air-Cleaner of Commercial Vehicle (디젤엔진의 공기청정기내 압력 및 유동분포에 관한 연구)

  • 류명석;구영곤;김경훈;맹주성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.47-53
    • /
    • 1997
  • The importance of intake system can not be overstressed in the recent heavy duty commercial vehicle design. The basic requirements of intake system are to have less flow resistance and better air cleaning performance which have direct effects on the performance and service life of engine. In order to improve the performance of engine intake system, the flow phenomena in the intake system should be fully understood. With readily availble CFD code, the numerical analysis becomes the more reliable tools for flow optimization in recent design work. In this research, flow field in the intake system was analyzed by STAR-CD, the 3-D computational fluid dynamics code. Especially, the flow inside of air cleaner was thoroughly analyzed. Pressure distribution and velocity profile in the air cleaner and intake duct was obtained. Having the dust seperated from incoming air at the expense of less pressure drop is the ultimate goal for the research.

  • PDF

Influence of Applied Pressure on the Microstructure of NCG Reinforced MMC Fabricated by Squeeze Casting (용탕단조법으로 제조된 니켈코팅흑연화이버 강화 금속복합재료의 미세조직에 대한 가압력의 영향)

  • Ryu, Yong-Mun;Yoon, Eui-Park
    • Journal of Korea Foundry Society
    • /
    • v.19 no.1
    • /
    • pp.66-70
    • /
    • 1999
  • In order to increase the wettability between ceramic fiber and metal matrix, ceramic fibers are generally coated with metal. In this paper, we examined how the nickel layers coated on continuous graphite fiber to increase the wettability are affected with variation applied pressure. In order to examine the behavior of nickel layer with variation of applied pressure, microstructure and nickel mapping of composites were investigated with SEM, and tensile properties of the composite were tested with UTM. As the applied pressure increases, nickel layers were resolved into the aluminum matrix and ultimate tensile strength of the composite decreased.

  • PDF

Analytical Study on Ultimate Design Method of Tube Flange Joints with the Rib Plate Using the High Strength Bolt (리브 붙은 고력볼트 강관플랜지 이음의 극한 설계방법에 관한 해석적 연구)

  • Kim, Seong Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.537-547
    • /
    • 2000
  • The tube flange joint often used in the field is a kind of tensional joint method using the high strength bolts. Transferring stress is conducted by high axial pressure between each part of material that is produced by twisting the high strength bolts. And historical characteristics of the flange joint have not been studied sufficiently and it is difficult to say that the design method is established definitely. Therefore new method using ultimate strength is need to be suggested to solve there problems in using flange joint. The purposes in this study are to gain the data base for establishing design method of joint in the form like figure1 and survey whether the joint of tube flange with non-equal diameter can be designed or not in the form like rib or ring.

  • PDF

Failure Modes of Vertical Ground Anchor in Plane Strain (평면변형률 상태에 있는 연직지반앵커의 파괴모-드)

  • Im, Jong-Cheol;;Park, Seong-Jae
    • Geotechnical Engineering
    • /
    • v.6 no.1
    • /
    • pp.43-58
    • /
    • 1990
  • In order to get ultimate pullout resistance of ground anchor, the position of failure surface, normal stress and friction angle on the failure surface should be known. In this study, the position of failure surface is obtained by observing deformation of ground around anchor, and stresses on the anchor surface are analyzed by measuring normal and shear stresses on the anchor surface through model anchor test in plane strain. In addition, the relationship between lateral earth pressure and the position of failure surface is analyzed and the formula for calculating ultimate pullout resistance of anchor is proposed by using non-dimensional coefficient of ultimate pullout resistance.

  • PDF

Behavior of circular CFT columns subject to axial force and bending moment

  • Kwak, Ji-Hyun;Kwak, Hyo-Gyoung;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • v.14 no.2
    • /
    • pp.173-190
    • /
    • 2013
  • The major objective of this paper is to evaluate the behavior and ultimate resisting capacity of circular CFT columns. To consider the confinement effect, proper material models with respect to the confinement pressure are selected. A fiber section approach is adopted to simulate the nonlinear stress distribution along the section depth. Material nonlinearity due to the cracking of concrete and the yielding of the surrounding steel tube, as well as geometric nonlinearity due to the P-${\Delta}$ effect, are taken into account. The validity of the proposed numerical analysis model is established by comparing the analytical predictions with the results from previous experimental studies about pure bending and eccentric axial loading. Numerical predictions using an unconfined material model were also compared to investigate the confinement effects on various loading combinations. The ultimate resisting capacities predicted by the proposed numerical model and the design guidelines in Eurocode 4 are compared to evaluate the existing design recommendation.