• Title/Summary/Keyword: Ultimate

Search Result 5,083, Processing Time 0.026 seconds

Axial compressive residual ultimate strength of circular tube after lateral collision

  • Li, Ruoxuan;Yanagihara, Daisuke;Yoshikawa, Takao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.396-408
    • /
    • 2019
  • The tubes which are applied in jacket platforms as the supporting structure might be collided by supply vessels. Such kind of impact will lead to plastic deformation on tube members. As a result, the ultimate strength of tubes will decrease compared to that of intact ones. In order to make a decision on whether to repair or replace the members, it is crucial to know the residual strength of the tubes. After being damaged by lateral impact, the simply supported tubes will definitely loss a certain extent of load carrying capacity under uniform axial compression. Therefore, in this paper, the relationship between the residual ultimate strength of the damaged circular tube by collision and the energy dissipation due to lateral impact is investigated. The influences of several parameters, such as the length, diameter and thickness of the tube and the impact energy, on the reduction of ultimate strength are investigated. A series of numerical simulations are performed using nonlinear FEA software LS-DYNA. Based on simulation results, a non-dimensional parameter is introduced to represent the degree of damage of various size of tubes after collision impact. By applying this non-dimensional parameter, a simplified formula has been derived to describe the relationship between axial compressive residual ultimate and lateral impact energy and tube parameters. Finally, by comparing with the allowable compressive stress proposed in API rules (RP2A-WSD A P I, 2000), the critical damage of tube due to collision impact to be repaired is proposed.

Axially-loaded multiplanar tubular KTX-joints: numerical analysis

  • Zhang, Chenhui;Zou, Bo;Yang, Guotao
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.173-190
    • /
    • 2022
  • With the development of spatial structures, the joints are becoming more and more complex to connect tubular members of spatial structures. In this study, an approach is proposed to establish high-efficiency finite element model of multiplanar KTX-joint with the weld geometries accurately simulated. Ultimate bearing capacity the KTX-joint is determined by the criterion of deformation limit and failure mechanism of chord wall buckling is studied. Size effect of fillet weld on the joint ultimate bearing capacity is preliminarily investigated. Based on the validated finite element model, a parametric study is performed to investigate the effects of geometric and loading parameters of KT-plane brace members on ultimate bearing capacity of the KTX-joint. The effect mechanism is revealed and several design suggestions are proposed. Several simple reinforcement methods are adopted to constrain the chord wall buckling. It is concluded that the finite element model established by proposed approach is capable of simulating static behaviors of multiplanar KTX-joint; chord wall buckling with large indentation is the typical failure mode of multiplanar KTX-joint, which also increases chord wall displacements in the axis directions of brace members in orthogonal plane; ultimate bearing capacity of the KTX-joint increases approximately linearly with the increase of fillet weld size within the allowed range; the effect mechanism of geometric and loading parameters are revealed by the assumption of restraint region and interaction between adjacent KT-plane brace members; relatively large diameter ratio, small overlapping ratio and small included angle are suggested for the KTX-joint to achieve larger ultimate bearing capacity; the adopted simple reinforcement methods can effectively constrain the chord wall buckling with the design of KTX-joint converted into design of uniplanar KT-joint.

Assessment of Ultimate Bearing Capacity for an Embedded Wall by Closed-Form Analytical Solution (근사적인 해석법에 의한 근입된 벽체의 극한지지력 평가)

  • Lee, Yong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.23-36
    • /
    • 2006
  • This study presents the development of a new closed-form analytical solution for the ultimate bearing capacity of an embedded wall in a granular mass. The closed-form analytical solution consists of upper and lower bound solutions (UB and LB). The calculated values from these bound solutions were compared with the author's two-dimensional laboratory wall model loading test and finite element analysis in the plastic region. The comparison showed that ultimate bearing loads from both the model test and finite element analysis are located between UB and LB. In particular, the ultimate bearing load from LB showed good agreement with the ultimate bearing load values from both the model test and finite element analysis. However, the calculated value from the conventional empirical form subjected to plane-strain conditions was shown to be much smaller than the LB.

An Applicative Estimation of Safety Factors about Driven Pile Using the Results of Static Loading Test on the Ultimate State (극한상태의 정재하시험결과를 이용한 타입말뚝의 안전율 적용성 평가)

  • Ki, Wan-Seo;Park, Noh-Hwan;Kim, Sun-Hak
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.441-457
    • /
    • 2009
  • This study estimated ultimate load by the determination methods based on ultimate load, yield load and settlement using experimental data from static load tests that applied load to driven piles used in sandy grounds at home and overseas until failure appeared markedly. Estimated ultimate load was normalized with actually measured failure load, and was compared among the determination methods according to the characteristics of pile. In addition, I have identified to the determination methods suitable for estimating ultimate load, and reevaluated the safety factor when determining allowable load. From the results of this study were drawn conclusions as follows. Among ultimate loads estimated by the ultimate-load-based determination methods, the value interpreted by Chin's method tended to overestimate actual measurements, and B. Hansen 80% standard and the stability plot method were considered most reliable as their results were closest to actual measurements. According to the results of this study, in calculating the allowable load, if the safety factor to be applied to failing load obtained by the method of determining extreme load is converted to the safety factor applied to the Standards for Structure Foundation Design, a value larger than 3.0 should be applied except the B. Hansen 90% method, and a value larger than 2.0 should be applied in the methods of determining yield load. In addition, if the safety factor to be applied to load obtained by the settlement standard is converted based on safety factor 3.0 for extreme load, a value smaller than 3.0 should be applied to the total settlement standard and the net settlement standard.

Ultimate Strength tests Considering Stranding Damage (좌초손상을 고려한 최종강도 실험)

  • Lee, T.K.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.2
    • /
    • pp.86-91
    • /
    • 2008
  • Ships operating in littoral sea are likely to be subjected to accidental load such as stranding. Once she has damage on the hull structure, her ultimate strength will be reduced. This paper is to investigate the effect of the stranding damage on ultimate strength of ship structure by using a series of collapse tests. For the experiment, 720 mm $\times$720 mm in section and 900mm in length of five box-girder models with stiffeners were pre- pared. Of the five, one has no damage and faur have an diamond shaped damage which represents the shape of rock section in seabed. The damage size is different between models. Among the damaged models, the damages of 3 of them were made by cutting the plate and one by pressing to represent stranding damage. Experiments were carried out under pure bending load and the applied load and displacements were recorded. The ultimate strength is reduced as the damage size increases, as expected. The largest damaged model has the damage size of 30% of breadth and its ultimate strength is reduced by 21% than that of no damaged one. The pressed one has lower ultimate strength than cut one. This might be due to the fact that the plate around the pressed damage area effect negatively on the ultimate strength.

  • PDF

Analytical Study of Ultimate Behavior of Steel Cable-stayed Bridges (완성계 강사장교의 극한 거동의 해석적 연구)

  • Kim, Seungjun;Im, Seok-Been;Lee, Kee-Sei;Kang, Young-Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.85-95
    • /
    • 2012
  • This paper presents an investigation on the ultimate behavior of steel cable-stayed bridges using nonlinear finite element analysis method. Cable-stayed bridges exhibit various geometric nonlinearities as well as material nonlinearities, so rational nonlinear finite element analysis should be performed for investigation of the ultimate behavior. In this study, ultimate behavior of steel cable-stayed bridges was studied using rational ultimate analysis method. Nonlinear equivalent truss element and nonlinear frame element were used for modeling the cable, girder and mast. Moreover, refined plastic hinge method was adopted for considering the material nonlinearity of steel members. In this study, the 2-step analysis method was used. Before live load analysis, initial shape analysis was performed in order to consider the dead load condition. For investigation of the ultimate behavior of steel cable-stayed bridges, analysis models which span length is 920.0 m were used. Radiating type and fan type were considered as the cable-arrangement types. With various quantitative evidences such as load-displacement curves, deformed shapes, locations of the yield point or region, bending moment distribution and so on, the ultimate behavior of steel cable-stayed bridges was investigated and described in this paper.

Objective and Subjective Quality Characteristics of Pork Longissimus Muscle as a Function of the Ultimate pH

  • Cho, Byung-Wook;Oliveros, Maria Cynthia;Park, Kyoung-Mi;Do, Kyoung-Tag;Lee, Ki-Hwan;Seo, Kang-Seok;Choi, Jae-Gwan;Lee, Moon-Jun;Cho, In-Kyung;Choi, Byoung-Chul;Ryu, Kyeong-Seon;Hwang, In-Ho
    • Food Science of Animal Resources
    • /
    • v.29 no.6
    • /
    • pp.685-694
    • /
    • 2009
  • The aim of the present study was to evaluate the variation in ultimate pH of commercial populations of pure-breed (Landrace, Duroc and Yorkshire) pig's longissimus muscles and their effect on objective meat quality traits and sensory characteristics. Fifty boars were sampled from 184 pigs, which were reared at three breeding farms and slaughtered at a commercial abattoir. The selection was determined based on ultimate pH, and animals were segregated into three groups: low pH (pH $\leq$ 5.5, n=13), medium pH (pH 5.5 to 5.6, n=18) and high pH (pH $\geq$ 5.6, n=16). The breeds had no significant effects; however, pigs with a higher ultimate pH had significantly (p<0.05) higher intramuscular fat content, lower level of polyunsaturated fatty acids, lower level of lipid oxidation and higher eating quality compared to those with lower ultimate pH. As the ultimate pH increased, the relative proportion of C14:0, C16:0 and C18:1 increased while C18:2n6 and C20:4n6 decreased. The present study demonstrates that the economic value of pigs can be characterized by the ultimate pH and/or intramuscular fat content. However, these results do not necessarily indicate that a high ultimate pH directly corresponds to high intramuscular fat content and vice versa.

Estimation of Pile Ultimate Lateral Load Capacity in Sand Considering Lateral Stress Effect (응력상태를 고려한 사질토지반에 관입된 말뚝의 극한수평지지력 분석 및 평가)

  • Lee, Jun-Hwan;Paik, Kyu-Ho;Kim, Dae-Hong;Hwang, Sung-Wuk;Kim, Min-Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.161-167
    • /
    • 2007
  • In this study, ultimate lateral load capacity of piles is analyzed with consideration of lateral stress effect. Based on results obtained in this study, a method for the estimation of ultimate lateral load capacity is proposed. This makes it possible to more realistically estimate the ultimate lateral load capacity under various stress states caused by in-situ soil condition and pile installation process. Calibration chamber test results with various soil conditions were used in the analysis. From the test results, it was found that effect of the lateral stress was greater than that of the vertical stress on the ultimate lateral load capacity of piles. It was also found that, as the relative density increases, displacements required to reach the ultimate state increases, showing relative displacements of around 14% and 18-25% for $D_R$ : 55% and 86%, respectively. Based on results obtained in this study, a methodology for the estimation of ultimate lateral load capacity of piles using correction factors was proposed. Results from proposed method matched well measured results.

Prediction of Ultimate Load of Drilled Shafts Embedded in Weathered Rock by Extrapolation Method (외삽법을 이용한 풍화암에 근입된 현장타설말뚝의 극한하중 예측)

  • Jung, Sung Jun;Lee, Sang In;Jeon, Jong Woo;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4C
    • /
    • pp.145-151
    • /
    • 2009
  • In general, a drilled shaft embedded in weathered rock has a large load bearing capacity. Therefore, most of the load tests are performed only up to the load level that confirms the pile design load capacity, and stopped much before the ultimate load of the pile is attained. If a reliable ultimate load value can be extracted from the premature load test data, it will be possible to greatly improve economic efficiency as well as pile design quality. The main purpose of this study is to propose a method for judging the reliability of the ultimate load of piles that is obtained from extrapolated load test data. To this aim, ten static load test data of load-displacement curves were obtained from testing of piles to their failures from 3 different field sites. For each load-displacement curve, loading was assumed as 25%, 50%, 60%, 70%, 80%, and 90% of the actual pile bearing capacity. The limited known data were then extrapolated using the hyperbolic function, and the ultimate capacity was re-determined for each extrapolated data by the Davisson method (1972). Statistical analysis was performed on the reliability of the re-evaluated ultimate loads. The results showed that if the ratio of the maximum-available displacement to the predicted displacement exceeds 0.6, the extrapolated ultimate load may be regarded as reliable, having less than a conservative 20% error on average. The applicability of the proposed method of judgment was also verified with static load test data of driven piles.