DOI QR코드

DOI QR Code

Assessment of Ultimate Bearing Capacity for an Embedded Wall by Closed-Form Analytical Solution

근사적인 해석법에 의한 근입된 벽체의 극한지지력 평가

  • Lee, Yong-Joo (Steel Structure Research Laboratory, Research Institute of Industrial Science & Technology (RIST))
  • Published : 2006.09.30

Abstract

This study presents the development of a new closed-form analytical solution for the ultimate bearing capacity of an embedded wall in a granular mass. The closed-form analytical solution consists of upper and lower bound solutions (UB and LB). The calculated values from these bound solutions were compared with the author's two-dimensional laboratory wall model loading test and finite element analysis in the plastic region. The comparison showed that ultimate bearing loads from both the model test and finite element analysis are located between UB and LB. In particular, the ultimate bearing load from LB showed good agreement with the ultimate bearing load values from both the model test and finite element analysis. However, the calculated value from the conventional empirical form subjected to plane-strain conditions was shown to be much smaller than the LB.

본 연구는 사질토 지반에 근입되어 있는 벽체의 극한지지력을 구하기 위해 새로운 근사적인 해석법의 전개과정에 대해 설명한다. 이러한 근사적인 형태의 해석기법은 상계 및 하계법으로 구성되어 있다. 상 하계법으로 계산된 값은 소성영역에서 구해진 2차원 실내벽체모형의 하중재하시험 및 유한요소해석 결과와 비교하였다. 비교 결과, 모형실험과 유한요소해석으로부터 구한 극한하중 값은 상계와 하계 사이에 모두 분포하는 것으로 나타났다. 이러한 비교에서 특이 할 사항은 하계법으로 구한 벽체의 극한하중이 모형실험 및 유한요소해석에서 구한 극한하중과 잘 일치되는 것을 보여 주었다. 그러나, 평면변형률 조건에서 기존의 경험적인 식에 의한 계산에서 얻어진 극한하중은 하계법의 극한하중에 훨씬 못 미치는 것으로 나타났다.

Keywords

References

  1. Atkinson, J. H. (1981), Foundations and Slopes, McGraw-Hill, UK
  2. Chen, W. F. (1975), Limit analysis and plasticity, Development in Geotechnical Engineering, Vol. 7, Elsvier
  3. Davis, R. O. and Selvadurai, A. P. S. (2002), Plasticity and Geomechanics, Cambridge University Press, UK
  4. Drescher, A. and Detournay, E. (1993), 'Limit load in translational failure mechanisms for associative and non-associative materials', Geotechnique, Vol.43, No.3, pp.443-456 https://doi.org/10.1680/geot.1993.43.3.443
  5. Lee, Y. J. (2004), Tunnelling adjacent to a row of loaded piles, PhD Thesis, University College London, University of London
  6. Lee, Y. J. (2005a), 'Laboratory model test of pile using photo-grammetry', Proceeding of the 2005 Annual Conference of KSCE, October 20-21, 2005, Jeju, Korea, pp.3953-3956
  7. Lee, Y. J. (2005b), 'P-S characteristics for end-bearing pile in granular material', Jour. of the KGS, Vol.21, No2, pp.85-91
  8. Lee, Y. J. and Bassett, R. H. (2006), 'Application of photo-grammetric technique to a model tunnel', Tunnelling and Underground Space Technology, Vol.21, No.1, pp.79-96 https://doi.org/10.1016/j.tust.2005.06.005
  9. Meyerhof G. G. (1951), 'Ultimate bearing capacity of foundations', Geotechnique, Vol.2, No.4, pp.301-332 https://doi.org/10.1680/geot.1951.2.4.301
  10. Powrie, W. (1997), Soil Mechanics: Concepts and Applications, E & FN SPON, London
  11. Terzaghi, K (1943), Theoretical soil mechanics, John Wiley and Sons Inc., New York
  12. Tomlinson, M. J. and Boorman, R. (1986), Foundation design and construction, Longman Scientific & Technical, New York