• Title/Summary/Keyword: Ubiquitous Vehicle Sensor

Search Result 31, Processing Time 0.035 seconds

Design of Gateway for In-vehicle Sensor Network

  • Kim, Tae-Hwan;Lee, Seung-Il;Hong, Won-Kee
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.73-76
    • /
    • 2005
  • The advanced information and communication technology gives vehicles another role of the third digital space, merging a physical space with a virtual space in a ubiquitous society. In the ubiquitous environment, the vehicle becomes a sensor node, which has a computing and communication capability in the digital space of wired and wireless network. An intelligent vehicle information system with a remote control and diagnosis is one of the future vehicle systems that we can expect in the ubiquitous environment. However, for the intelligent vehicle system, many issues such as vehicle mobility, in-vehicle communication, service platform and network convergence should be resolved. In this paper, an in-vehicle gateway is presented for an intelligent vehicle information system to make an access to heterogeneous networks. It gives an access to the server systems on the internet via CDMA-based hierarchical module architecture. Some experiments was made to find out how long it takes to communicate between a vehicle's intelligent information system and an external server in the various environment. The results show that the average response time amounts to 776ms at fixec place, 707ms at rural area and 910ms at urban area.

  • PDF

A Design and Implementation of the remote control system of vehicle using the G-sensor (G센서를 이용한 차량원격제어시스템 설계 및 구현)

  • Song, Jong-Gun;Kwon, Doo-Wy;Do, Kyeong-Hoon;Jang, Won-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.135-138
    • /
    • 2009
  • G-Sensor is being used for controlling motion of smart-phone and robot. G-Sensor can control motion to several direction, because it is composed of X, Y, and Z axis and also can be used on many mobile-phone by using Wi-Fi communication and RS-232C communication on the Bluetooth module. In this research, we suggest the application that realize and develop visual-vehicle-remote-control-system by using mobile-phone with G-Sensor so that drivers can more easily remote control and manage their vehicle with mobile-phone in real-time visual.

  • PDF

Evaluating of Traffic Flow Distributed Control Strategy on u-TSN(ubiquitous-Transportation Sensor Network) (V2I 통신을 이용한 교통류 분산제어 전략 수립 및 평가)

  • Kim, Won-Kyu;Lee, Min-Hee;Kang, Kyung-Won;Kim, Byung-Jong;Kang, Yeon-Su;Oh, Cheol;Kim, Song-Ju
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.3
    • /
    • pp.122-131
    • /
    • 2009
  • Ubiquitous-Transportation sensor network is able to realize a vehicle ad-hoc network. Since there are some problems in an existing ITS system, the new technology and traffic information strategies are requirements in this advanced system, u-TSN. The purposes of this paper is to introduce the components on u-TSN system, establish new traffic strategies for this system, and then evaluate these strategies by making a comparative study of ITS and using micro traffic simulator, AIMSUN. The strategy evaluated by AIMSUN is position-based multicast strategy which provides traffic information to vehicles using V2I (vehicle to Infrastructure) communication. This paper focuses on the providing real-time route guidance information when congestion is occurred by the incidents. This study estimates total travel time on each route by API modules. Result from simulation experiments suggests that position-based multicast strategy can achieve more optimal network performance and increased driver satisfaction since the total accumulated travel times of both the major road and the total system on position-based multicast strategy are less than those on VMS.

  • PDF

Packet Transmission Scheme for Collecting Traffic Information based on Vehicle Speed in u-TSN system (u-TSN 시스템의 교통정보 수집을 위한 차량 이동속도에 따른 패킷 전송 방안)

  • Bae, Jeong-Kyu;Han, Dong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.6
    • /
    • pp.35-41
    • /
    • 2010
  • The ubiquitous-transportation sensor network (u-TSN) system is a next generation transportation system that provides traffic information through analysis and processing periodic information from vehicles. In this paper, we propose the adequate transmission scheme from vehicles for collecting vehicular information. The conventional scheme is transmitting each vehicle information every 0.1s. A variable transmission period scheme is proposed in this paper according to vehicle speed. The proposed and conventional schemes are compared with computer simulations.

A Study on Ubiquitous Road for Prevention of the Overweight Vehicles (과적차량 방지를 위한 유비쿼터스도로에 관한 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Park, Jung-Hoon;Kim, Heoun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.225-232
    • /
    • 2008
  • Overload vehicles operate damage to road, bridge, and then increasing in maintenance and repair cost because structures are reduced durability. The existing regulation systems have many problems and need coping measure. Therefore, this paper organized Ubiquitous sensor network system for development of intelligent auto overload vehicle regulation system about high speed vehicles, also axial load WIM sensor was selected by indoor experiment through wireless protocol. And we examined possibility U-load auto overload vehicle regulation system through experiment of the transmission and reception distance. If this system will apply to road and bridge, might be effective for economy and convenience through establishment of U-IT system. And high speed vehicle that was amalgamate IT technology and existing overload regulation problems, also tested wireless sensor for USN organization. This experiment aim to organize system interface for user through perfection man-less, wireless system of Internal/External Network from high speed WIN sensor with USN organization. Accordingly, it is necessary experimentation through Test Bed for constitution External network and application of actually regulations using WCDMA/HSDPA.

New Vehicle Verification Scheme for Blind Spot Area Based on Imaging Sensor System

  • Hong, Gwang-Soo;Lee, Jong-Hyeok;Lee, Young-Woon;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.4 no.1
    • /
    • pp.9-18
    • /
    • 2017
  • Ubiquitous computing is a novel paradigm that is rapidly gaining in the scenario of wireless communications and telecommunications for realizing smart world. As rapid development of sensor technology, smart sensor system becomes more popular in automobile or vehicle. In this study, a new vehicle detection mechanism in real-time for blind spot area is proposed based on imaging sensors. To determine the position of other vehicles on the road is important for operation of driver assistance systems (DASs) to increase driving safety. As the result, blind spot detection of vehicles is addressed using an automobile detection algorithm for blind spots. The proposed vehicle verification utilizes the height and angle of a rear-looking vehicle mounted camera. Candidate vehicle information is extracted using adaptive shadow detection based on brightness values of an image of a vehicle area. The vehicle is verified using a training set with Haar-like features of candidate vehicles. Using these processes, moving vehicles can be detected in blind spots. The detection ratio of true vehicles was 91.1% in blind spots based on various experimental results.

Design of an In-vehicle Intelligent Information System for Remote Management (차량 원격 진단 및 관리를 위한 차량 지능 정보시스템의 설계)

  • Kim, Tae-Hwan;Lee, Seung-Il;Lee, Yong-Doo;Hong, Won-Kee
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1023-1026
    • /
    • 2005
  • In the ubiquitous computing environment, an intelligent vehicle is defined as a sensor node with a capability of intelligence and communication in a wire and wireless network space. To make it real, a lot of problems should be addressed in the aspect of vehicle mobility, in-vehicle communication, common service platform and the connection of heterogeneous networks to provide a driver with several intelligent information services beyond the time and space. In this paper, we present an intelligent information system for managing in-vehicle sensor network and a vehicle gateway for connecting the external networks. The in-vehicle sensor network connected with several sensor nodes is used to collect sensor data and control the vehicle based on CAN protocol. Each sensor node is equipped with a reusable modular node architecture, which contains a common CAN stack, a message manager and an event handler. The vehicle gateway makes vehicle control and diagnosis from a remote host possible by connecting the in-vehicle sensor network with an external network. Specifically, it gives an access to the external mobile communication network such as CDMA. Some experiments was made to find out how long it takes to communicate between a vehicle's intelligent information system and an external server in the various environment. The results show that the average response time amounts to 776ms at fixed place, 707ms at rural area and 910ms at urban area.

  • PDF

Vehicle Speed Measurement System based on Wireless Sensor Network (무선 센서네트워크 기반 차량속도 측정 시스템)

  • Yoo, Seongeun;Kim, Taehong;Park, Taisoo;Kim, Daeyoung;Shin, Changsub;Sung, Kyungbok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.1
    • /
    • pp.42-48
    • /
    • 2008
  • The architecture of WSN based Vehicle Speed Measurement System is presented in this paper from Telematics Sensor Network(TSN) to Management System. To verify the feasibility of the system, we implemented the vehicle speed measurement system and evaluated the accuracy of velocity measured by the system in our testbed, an old highway located near Kyungbu highway. The system performed over 95% of accuracy at 80kmph from the measurement. In addition, the battery life time of the sensor node was evaluated by simulation analysis with real measured current consumption profiles. Assuming the maximum average daily traffic in 2005, the battery life time is expected to be over 1.6 year from the simulation result.

  • PDF

Bird's-Eye View Service under Ubiquitous Transportation Sensor Network Environments (Ubiquitous Transportation Sensor Network에서 Bird's-Eye View 서비스)

  • Kim, Joohwan;Nam, Doohee;Baek, Sungjoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.225-231
    • /
    • 2013
  • A bird's-eye view is an elevated view of an object from above, with a perspective as though the observer were a bird, often used in the making of blueprints, floor plans and maps. It can be used under severe weather conditions when visibility is poor. Under low visibility environments, drivers can communicate each other using V2V communication to get each vehicle's status to prevent collision and other accidents. Ubiquitous transportation sensor networks(u-TSN) and its application are emerging rapidly as an exciting new paradigm to provide reliable and comfortable transportatione services. The ever-growing u-TSN and its application will provide an intelligent and ubiquitous communication and network technology for traffic safety area.