• Title/Summary/Keyword: Uav

Search Result 1,796, Processing Time 0.026 seconds

A Study on the Integration of Airborne LiDAR and UAV Data for High-resolution Topographic Information Construction of Tidal Flat (갯벌지역 고해상도 지형정보 구축을 위한 항공 라이다와 UAV 데이터 통합 활용에 관한 연구)

  • Kim, Hye Jin;Lee, Jae Bin;Kim, Yong Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.345-352
    • /
    • 2020
  • To preserve and restore tidal flats and prevent safety accidents, it is necessary to construct tidal flat topographic information including the exact location and shape of tidal creeks. In the tidal flats where the field surveying is difficult to apply, airborne LiDAR surveying can provide accurate terrain data for a wide area. On the other hand, we can economically obtain relatively high-resolution data from UAV (Unmanned Aerial Vehicle) surveying. In this study, we proposed the methodology to generate high-resolution topographic information of tidal flats effectively by integrating airborne LiDAR and UAV point clouds. For the purpose, automatic ICP (Iterative Closest Points) registration between two different datasets was conducted and tidal creeks were extracted by applying CSF (Cloth Simulation Filtering) algorithm. Then, we integrated high-density UAV data for tidal creeks and airborne LiDAR data for flat grounds. DEM (Digital Elevation Model) and tidal flat area and depth were generated from the integrated data to construct high-resolution topographic information for large-scale tidal flat map creation. As a result, UAV data was registered without GCP (Ground Control Point), and integrated data including detailed topographic information of tidal creeks with a relatively small data size was generated.

Earth-Volume Measurement of Small Area Using Low-cost UAV (저가형 UAV를 이용한 소규모지역의 토량 측정)

  • Seong, Ji Hoon;Han, You Kyung;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.279-286
    • /
    • 2018
  • In the civil works, the measurement of earth-volume is one of the important elements in the estimation of the reasonable construction cost. Related studies mainly used GPS (Global Positioning System) or total station to obtain information on civil work areas. However, these methods are difficult to implement in inaccessible areas. Therefore, the aim of this paper is to use the UAV (Unmanned Aerial Vehicle) to measure the earth-volume. The study area is located in a reservoir construction site in Sangju-si, Gyeongsangbuk-do, Republic of Korea. We compared the earth-volume amounts acquired by UAV-based surveying to ones acquired by total station-based and GPS-based surveying, respectively. In the site, the amount of earth-volume acquired by GPS was $147,286.79m^3$. The amount of earth-volume acquired by total station was $147,286.79m^3$, which is the 96.13% accuracy compared to the GPS-based surveying. The earth-volume obtained by UAV was $143,997.05m^3$ when measured without GCPs (Ground Control Points), $147,251.71m^3$ with 4 GCPs measurement, and $146,963.81m^3$ with 7 GCPs measurement. Compared to the GPS-based surveying, 97.77%, 99.98%, and 99.78% accuracies were obtained from the UAV-based surveying without GCP, 4 GCPs, and 7 GCPs, respectively. Therefore, it can be confirmed that the UAV-based surveying can be used for the earth-volume measurement.

Development of a UAV-Based Urban Thermal Comfort Assessment Method (UAV 기반 도시 공간의 열 쾌적성 평가기법 개발)

  • Seounghyeon Kim;Bonggeun Song;Kyunghun Park
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.2
    • /
    • pp.61-77
    • /
    • 2024
  • The purpose of this study was to develop a method for rapidly diagnosing urban thermal comfort using Unmanned Aerial Vehicle (UAV) based data. The research was conducted at Changwon National University's College of Engineering site and Yongji Park, both located in Changwon, Gyeongsangnam-do. Baseline data were collected using field measurements and UAVs. Specifically, the study calculated field measurement-based thermal comfort indices PET and UTCI, and used UAVs to create and analyze vegetation index (NDVI), sky view factor (SVF), and land surface temperature (LST) images. The results showed that UAV-predicted PET and UTCI had high correlations of 0.662 and 0.721, respectively, within a 1% significance level. The explanatory power of the prediction model was 43.8% for PET and 52.6% for UTCI, with RMSE values of 6.32℃ for PET and 3.16℃ for UTCI, indicating that UTCI is more suitable for UAV-based thermal comfort evaluation. The developed method offers significant time-saving advantages over traditional approaches and can be utilized for real-time urban thermal comfort assessment and mitigation planning

Real-Time Shooting Area Analysis Algorithm of UAV Considering Three-Dimensional Topography (입체적 지형을 고려한 무인항공기의 실시간 촬영 영역 분석 알고리즘)

  • Park, Woo-Min;Choi, Jeong-Hun;Choi, Seong-Geun;Hwang, Nam-Du;Kim, Hwan-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1196-1206
    • /
    • 2013
  • In this paper, based on the information about navigation system of UAV with PTZ camera and 3D topography, algorithm able to show us in real-time UAV's geographical shooting location and automatically calculate superficial measure of the shooting area is proposed. And the method that can automatically estimate whether UAV is allowed to shoot a specific area is shown. In case of an UAV's shooting attempt at the specific area, obtainability of valid image depends on not only UAV's location but also information of 3D topography. As a result of the study, Ground Control Center will have real-time information about whether UAV can shoot the needed topography. Therefore, accurate remote flight control will be possible in real-time. Furthermore, the algorithm and the method of estimating shooting probability can be applied to pre-flight simulation and set of flight route.

Study on Data-link Antenna System for UAV (무인기용 탑재 데이터링크 안테나 시스템에 관한 연구)

  • Yeo, Su-Cheol;Kang, Byoung-Wook;Bae, Ki-Hyeong;Yoon, Chang-Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.9-14
    • /
    • 2020
  • In this paper, we studied on-board antenna(primary link/secondary link/satellite link) used in UAV Data-link system. As a result, it is ideal to configure the Data-link as a triple link to secure the flight stability of the UAV, but the communication link should be configured according to the operating platform. As a result of overseas R&D trend analysis, the on-board Data-link antenna is installed and operated in a location where it is easy to secure LOS. The primary link consists of a directional antenna for basic operation and an omni-directional antenna for emergency operation. The secondary link uses a monopole/dipole antenna in the UHF/C band. Satellite link has been developed to apply phased array antenna to improve UAV operability.

An Improvement of Efficiently Establishing Topographic Data for Small River using UAV (UAV를 이용한 소하천 지형자료 구축에 관한 효율성 제고)

  • Yeo, Han Jo;Choi, Seung Pil;Yeu, Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.3-8
    • /
    • 2016
  • Due to the recent technical development and the enhancement of image resolution, Unmanned Airborne Vehicles(UAVs) have been used for various fields. A low altitude UAV system takes advantage of taking riverbed imagery at small rivers as well as land surface imagery on the ground. The bathymetric data are generated from the low altitude UAV system. The accuracy of the data is analyzed along water depths, comparing GPS observations and a DSM generated from UAV images. It is found that the depth accuracy of the geospatial data below 50 cm depth of water satisfies the regulation(${\pm}10cm$ spatial accuracy) of bathymetric surveying. Therefore this research shows that the geospatial data generated from UAV images at shallow regions of rivers can be used for bathymetric surveying.

Study on UAV Flight Patterns and Simulation Modelling for UTM (저고도 무인기 교통관리 체계에서 무인기 비행패턴 분류 및 시뮬레이션 모형 개발)

  • Jung, Kyu-sur;Kim, Se-Yeon;Lee, Keum-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.1
    • /
    • pp.13-19
    • /
    • 2018
  • In this paper, we classified a flight pattern of unmanned aerial vehicle(UAV) which will be operating in UTM system and analyzed its flight pattern by purpose of use. Flight patterns of UAV are sorted into three patterns which are circling, monitoring and delivery. We considered four cases of industry areas using UAV which are agriculture, infrastructure monitoring, public safety & security(p.s.s) and delivery. It is necessary to build a simulation model as a verification tool for applying the flight pattern according to the use of UAV to the real UTM system. Therefore, we propose the simulation model of UAV with updating states over time. We applied simulation to UAV monitoring flight pattern, and confirmed that the flight was done by the given input data. The simulation model will be used in the future to verify that the UAV has various flight patterns and can operate safely and efficiently for the intended use.

Structure Design of Surveillance Location-Based UAV Motor Primitives (감시 위치 기반의 UAV 모터프리미티브의 구조 설계)

  • Kwak, Jeonghoon;Sung, Yunsick
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.4
    • /
    • pp.181-186
    • /
    • 2016
  • Recently, the surveillance system research has focused because Unmanned Aerial Vehicle(UAV) has the ability to monitor wide area. When the wide area are monitored, controlling UAVs repeatedly by pilots invokes the cost problem to operate UAVs. If monitoring path can be defined in advance, the cost problem can be solved by controlling UAVs autonomously based on the monitoring path. The traditional approach generates multiple motor primitives based on flied GPS locations. However, the monitoring points by UAVs are not considered by the generated motor primitives, the surveillance by UAVs is not performed properly. This paper proposes a motor primitive structure for surveillance UAVs to be flied autonomously. Motor primitives are generated automatically by setting surveillance points to denote surveillance targets accurately.

Accuracy Analysis According to the Number of GCP Matching (지상기준점 정합수에 따른 정확도 분석)

  • LEE, Seung-Ung;MUN, Du-Yeoul;SEONG, Woo-Kyung;KIM, Jae-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.127-137
    • /
    • 2018
  • Recently, UAVs and Drones have been used for various applications. In particular, in the field of surveying, there are studies on the technology for monitoring the terrain based on the high resolution image data obtained by using the UAV-equipped digital camera or various sensors, or for generating high resolution orthoimage, DSM, and DEM. In this study, we analyzed the accuracy of GCP(Ground control point) matching using UAV and VRS-GPS. First, we used VRS-GPS to pre-empt the ground reference point, and then imaged at a base altitude of 150m using UAV. To obtain DSM and orthographic images of 646 images, RMSE was analyzed using pix4d mapper version As a result, even if the number of GCP matches is more than five, the error range of the national basic map(scale : 1/5,000) production work regulations is observed, and it is judged that the digital map revision and gauging work can be utilized sufficiently.

A Study on the Improvement of Working Methods for cadastral survey Using UAV (UAV를 활용한 지적측량 업무방식 개선에 관한 연구)

  • Ko, Jung-Hyun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.2
    • /
    • pp.169-185
    • /
    • 2019
  • While images and aerial photographs using conventional satellites have the advantage of providing data in a vast area, there is a difficult aspect: the limitations of filming and processing data in a particular region at a desired time and the repetitive filming of a short cycle. With the development of many new technologies to overcome these shortcomings, methods of building cadastral information are changing rapidly. In particular, unmanned aerial vehicles that deploy cadastral information quickly and accurately using UAV have increased interest in technology that obtains cadastral information. Therefore, the purpose of this study was to suggest the application of cadastral measurement tasks in areas subject to cadastral measurement using UAV. To this end, the Commission decided to compare and analyze the accuracy of high-resolution images produced by observation area and apply them to existing cadastral work using verified images and cadastral data. In this study, we will analyze the applicability of UAVs to their cadastral survey by analyzing the current status of legislation related to cadastral survey and the technical characteristics of UAVs and propose technological, legal and institutional improvement measures for introduction based on them.