• Title/Summary/Keyword: UV-light

Search Result 1,842, Processing Time 0.025 seconds

Dependence of Retardation Dispersion on the Ultraviolet Polarization Direction During Photopolymerization of Self-organized Smectic Reactive Mesogen Molecules

  • Jeong, Jinyoung;Choi, Yu-Jin;Jeong, Kwang-Un;Lee, Ji-Hoon
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.286-290
    • /
    • 2018
  • We investigated the dependence of the retardation dispersion on the polarization direction of ultraviolet (UV) light during the photopolymerization of self-organized smectic reactive mesogen (RM) molecules. RM retarder film that was photopolymerized with UV light linearly polarized parallel to the layer plane showed negative dispersion (ND) of retardation for a wide range of UV polymerization temperatures. On the other hand, film that was photopolymerized with unpolarized UV light showed negative dispersion in a narrow range of UV polymerization temperatures. With a certain UV polymerization temperature, the dispersion of retardation was converted from positive to negative, depending on the UV polarization.

Involvement of lncRNA-HOTTIP in the Repair of Ultraviolet Light-Induced DNA Damage in Spermatogenic Cells

  • Liang, Meng;Hu, Ke
    • Molecules and Cells
    • /
    • v.42 no.11
    • /
    • pp.794-803
    • /
    • 2019
  • Ultraviolet light (UV)-induced cellular response has been studied by numerous investigators for many years. Long noncoding RNAs (lncRNAs) are emerging as new regulators of diverse cellular process; however, little is known about the role of lncRNAs in the cellular response to UV treatment. Here, we demonstrate that levels of lncRNA-HOTTIP significantly increases after UV stimulation and regulates the UV-mediated cellular response to UV through the coordinate activation of its neighboring gene Hoxa13 in GC-1 cells (spermatogonia germ cell line). UV-induced, G2/M-phase arrest and early apoptosis can be regulated by lncRNA-HOTTIP and Hoxa13. Furthermore, lncRNA-HOTTIP can up-regulate ${\gamma}-H_2AX$ and p53 expression via Hoxa13 in UV-irradiated GC-1 cells. In addition, p53 has the ability to regulate the expression of both lncRNA-HOTTIP and Hoxa13 in vitro and in vivo. Our results provide new data regarding the role lncRNAs play in the UV response in spermatogenic cells.

Measurement of UV radiation of LED lighting

  • Ku, Seong-Mo;Im, Jong-Min;Yi, Chin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.3
    • /
    • pp.7-14
    • /
    • 2011
  • Many countries and researchers in the lighting field have focused on the LED light source as a solution to energy savings and environmental pollution. The LED light source consumes less power, has a long life and is highly economical. It is vibration and shock-resistant, and environment friendly as well. But LED lighting has some problems. In particular, the photobiological safety of LED light sources is emerging as an issue. Ultraviolet radiation from the LED light source emitted directly to the human body over a long period of time is harmful. In this paper, UV radiation from white LED was measured. Finally, the LED light source emits UV radiation, but it is relatively small when compared to others.

Fabrication of Disposable Light Exposure Detector Kit using UV Curable Hydrogels (자외선 경화 하이드로겔을 사용한 일회용 빛 노출 검출 키트의 제조와 특성분석)

  • Kim, Young Ho;Kim, Gyu-Man;Dang, Trung Dung;Choi, Jin Ho;Kim, Hwan-Gon;Park, Sangju;Lee, Sang Hak
    • Applied Chemistry
    • /
    • v.15 no.1
    • /
    • pp.17-20
    • /
    • 2011
  • A disposable light exposure detector kit has been developed by UV curing of a hydrogel material. The devised light exposure detector kit consisted of light sensitive structures, bottom plate, character sheet and sticky back plate. A light exposure detector kit has a serial light sensitive structures that contain various light sensitive dyes such as rhodamine and fluorescein. The light sensitive structure composed of UV curable hydrogel polymer material as a supporing material and photosensitive dye in a certain concentration. The fabrication procedure of the ligh exposure detector kit is very simple and fast due to UV curing procedure of a photopolymerizable hydrogel material such as poly(ethylene glycol) methyl ether acrylate (PEGMEA) and poly(ethylene glycol) diacrylate (PEGDA) with a photosensitive dye. By the proposed fabrication method, various size and shape of a light exposure detector kit could be fabricated using a flexible elastomer mold. Due to a fast and inexpensive fabrication method, the light exposure detector kit could be use a single use for various industrial applications. According to light irradation, the light sensitive structure on a light exposure detector kit could be lose its color by decomposition of a photosensitive dye chemical in the structure. Thus the amount of the exposed light on a substrate could easily be recognised by changing color or transparency of the structure.

A Research on Middle School Teachers and Students Awareness and Understanding of Analysis for the Light (중학교 과학 교사와 학생들의 빛에 대한 인식과 이해 정도 분석)

  • Kim, Minyoung;Han, Shin;Park, Taeyoon
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.8 no.3
    • /
    • pp.267-280
    • /
    • 2015
  • The purpose of this study is to identify the conceptions of middle school students and teachers about Visible-Light, Ultra-Violet(UV) and Infrared-Ray(IR). We administered questionnaire 3 teacher and 102 students(48 people of middle school 2nd students and 54 people of middle school 3rd students) who learned by 3 teachers in seoul. From the analysis, it was found that many students and teachers didn't understand the basic principle of UV and IR. Significant number of students belive that it is possible to see objects the absence of visible light. Most students belive that they can see objects in the presence of UV light alone. They think that "Light" is single concept. Teachers were generally more aware of the origin and explanation of UV. But teachers expressed some uncertainties. They tend to think negative effect for UV.

Effect of particle size of TiO2 and octyl-methoxycinnamate (OMC) content on sun protection factor (SPF)

  • Choi, Jaeyeong;Kim, Suyeon;Kim, Woonjung;Eum, Chul Hun;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.159-166
    • /
    • 2017
  • Exposure to UV light, i.e., UV-A (320-400 nm) or UV-B (290-320 nm) radiation, can cause skin cancer. Titanium dioxide ($TiO_2$) effectively disperses UV light. Therefore, it is used as a physical UV filter in many UV light blockers. Usually, the $TiO_2$ content in commercialized UV blockers is 25 % at most. To block UV-B, a chemical UV blocker, octyl-methoxy cinnamate (OMC) is used. OMC is commonly used in combination with $TiO_2$. In this study, $TiO_2$ and OMC were mixed in different proportions to produce UV blockers with different compositions. Also the changes in the sun protection factor (SPF) based on the composition and $TiO_2$ particle sizes were investigated. In order to analyze the $TiO_2$ particle size, dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AsFlFFF) were used. The results showed that the SPF was influenced by the proportion of $TiO_2$ and OMC, where the proportion of $TiO_2$ induced a more significant influence. In addition, changes in the $TiO_2$ particle size based on the proportion of OMC were observed.

Evaluation of Ultraviolet Blocking of Ophthalmic Lenses (안경렌즈의 자외선 차단 평가)

  • Yu, Dong-Sik;Yoo, Jong-Sook
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.7-12
    • /
    • 2008
  • Purpose: To evaluate ultraviolet (UV) blocking characteristics of transparent and tinted ophthalmic lenses. Methods: The transmittance spectra of ophthalmic lenses were measured using the method suggested in ANSI Z80.1 standard. Transmittance percentage were calculated for each lens for UV (200~380 nm; UVA, UVB, UVC) and blue light portions (380~400 nm) of spectrum. Results: The results indicate that transparent plastic lenses with middle, high refractive index and tinted plastic lenses had superior UV blocking characteristics at UV radiation while UV blocker-untreated lenses such as crown glasses and CR39 did not. All except high refractive index lenses and anti-glare night vision lens was not effectively blocked blue light. Conclusions: Crown glass and CR39 lenses need to treat UV blockers to protect eyes from UV. Also, all lenes except high refractive index lenses and anti-glare night vision lens need to treat blue light blockers for protecting from blue light.

  • PDF

Enhancement in the Photocatalytic Activity of Au@TiO2 Nanocomposites by Pretreatment of TiO2 with UV Light

  • Khan, Mohammad Mansoob;Kalathil, Shafeer;Lee, Jin-Tae;Cho, Moo-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1753-1758
    • /
    • 2012
  • A novel, efficient and controlled protocol for the synthesis and enhanced photocatalytic activity of $Au@TiO_2$ nanocomposite is developed. $TiO_2$ (P25) was pretreated by employing UV light (${\lambda}$ = 254 nm) and the pretreated $TiO_2$ was uniformly decorated by gold nanoparticles (AuNPs) in presence of sodium citrate and UV light. UV pretreatment makes the $TiO_2$ activated, as electrons were accumulated within the $TiO_2$ in the conduction band. These accumulated electrons facilitate the formation of AuNPs which were of very small size (2-5 nm), similar morphology and uniformly deposited at $TiO_2$ surface. It leads to formation of stable and crystalline $Au@TiO_2$ nanocomposites. The rapidity (13 hours), monodispersity, smaller nanocomposites and easy separation make this protocol highly significant in the area of nanocomposites syntheses. As-synthesized nanocomposites were characterized by TEM, HRTEM, TEM-EDX, SAED, XRD, UV-visible spectrophotometer and zeta potential. Dye degradation experiments of methyl orange show that type I ($Au@TiO_2$ nanocomposites in which $TiO_2$ was pretreated with UV light) has enhanced photocatalytic activity in comparison to type II ($Au@TiO_2$ nanocomposites in which $TiO_2$ was not pretreated with UV light) and $TiO_2$ (P25). This shows that pretreatment of $TiO_2$ provides type I a better catalytic activity.

A STUDY ON THE EFFECT OF UV LIGHT ABSORBER ON THE COLOR CHANCE OF MAXILLOFACIAL SILICONE (자외선 차단제가 악안면 실리콘의 색변화에 미치는 영향에 관한 연구)

  • Song, Yun-Seok;Lim, Ju-Hwan;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.3
    • /
    • pp.343-357
    • /
    • 1999
  • The color change of maxillofacial silicone has been attributed to certain environmental factors such as exposure to the UV component of natural sunlight, wetting and drying of the elastomer and surface abrasion resulting from the application and removal of cosmetics. The purpose of this study was to evaluate the color change of maxillofacial silicone (Silastic MDX4-4210) according to type of pigment (cadmium yellow, titanium white, cosmetic red), and UV absorber application method after 200, 400, and 600 hours of 350nm UV light irradiation. The results were as follows. 1. According to type of pigments, after 200 hours cosmetic red showed significantly larger color change than cadmium yellow and titanium white, and after 400 and 600 hours color change significantly decreased in the order of cosmetic red, cadmium yellow, and titanium white (p<0.05). 2. In the cadmium yellow group, after 200 hours, the non-treatment group showed significantly larger color change, but after 400 and 600 hours, color change significantly decreased in the order of non-treatment, surface application and mixed group (p<0.05). 3. In the titanium white group, there was no significant color change difference between the three groups after 200 and 400 hours, but after 600 hours, the mixed group showed significantly smalt or color change than the non-treatment and surface application groups (p<0.05). 4. In the cosmetic red group, there was significant decrease in color change in the order of non-treatment, surface application and mixed group (p<0.05). From the results above, the effect of UV light absorber differed according to the type of pigment, but mixing UV light absorber with maxillofacial silicone is thought to give superior resistance against UV light irradiation in the long run.

  • PDF

The Effect of UV-B Irradiation and Far-red Light Reduction on the Growth of Laurus nobilis in Indoor (실내환경에서 자외선 조사 및 원적외선 차단이 월계수의 생장에 미치는 영향)

  • Fujiwara, Keisuke;Toda, Hiroto;Choi, Dong-Su
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.1-7
    • /
    • 2012
  • The main purpose of this research is to evaluate the effect of light quality on the growth and physiological activities of Laurus nobilis plants growing indoors, the L. nobilis seedlings were grown under four types of lighting for 180 days. The seedlings were grown under 4 different treatments((n=9 seedlings per treatment): control, control supplemental UV-B irradiated(+UV), FR reduced(-FR) and simultaneously supplemental UV-B irradiated and FR reduced(+UV-FR)). It was found that UV-B irradiation(+UV) reduced dry weight and leaf area, and increased leaf thickness and the amount of UV-absorbing compounds per unit leaf area. In contrast, a reduction in far-red(FR) light did not affect any of these parameters. Interestingly, however, the elongation growth and net photosynthetic rate of the L. nobilis seedlings grown under simultaneous UV-B irradiation and FR reduction(+UV-FR) were significantly decreased than the control treatment. From these results, it is concluded that the light quality has a large effect on the indoor growth of L. nobilis. This study can suggest basic information for managed in the L. nobilis in indoor using light quality.