• Title/Summary/Keyword: UV-induced immunosuppression

Search Result 7, Processing Time 0.026 seconds

Combined Effect of Korean Red Ginseng and EGb 761 on Ultraviolet B-induced Contact Hypersensitivity (UV-B조사로 유도된 접촉 과민반응에 대한 홍삼과 홍삼+EGb 761 혼합물의 억제 효과 비교)

  • Choi Wookhee;Kim Duksung;Ann Hyoungsoo;Lee Youngmi;Ahn Ryoungme
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.2 s.49
    • /
    • pp.143-151
    • /
    • 2005
  • Exposure of skin to UV-B radiation can cause inflammatory response and immunosuppression. It has been reported that Korean Red Ginseng (KRG) has several pharmacological and physiological effects such as antioxidant, anticancer and improving immune function. In this study, we investigated that topical KRG and KRG + EGb 761 (Ginkgo biloba extract) combination prevented UV-B induced inflammation and inhibition of contact hypersensitivity response. Topical application of KRG, f days prior to or 5 days after exposure to 1MED and 2MED of UV-B, reduced skin thickness compared to non -treated group and resulted in protection against immunosuppression. However, KRG+EGb 761 combination has a little protection against the only 1MED UV-B. In conclusion. Topical application of KRG was more effective than combination in protection against UV-B induced inflammation and immune suppression. Also, we suggest that KRG can provide protection from inflammation and immunosuppression by UV-B radiation.

Ultraviolet A Induces Immunosuppression, Protection or Memory Enhancement Depending on Dose, while Ultraviolet B is Immunosuppressive and Tolerogenic over a Large Dose Range

  • Halliday, Gary M.;Byrne, Scott N.
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.197-200
    • /
    • 2002
  • UVR-induced immunosuppression contributes to skin cancer. The aim was to construct accurate dose response curves for primary and secondary contact sensitivity for solar-simulated UVR (ssUVR; 290-400nm), UVA and UVB as the role of UVA in immunosuppression is controversial. We used a xenon arc source. The mice were immobilised, enabling accurate dosing. C57BL/6 mice were immunosuppressed at half the dose of ssUVR required to cause sunburn but not by higher doses (up to the sunburn dose). Thus, ssUVR causes systemic immunosuppression only over a narrow, low dose range. UVA caused suppression at low but not high doses whereas UVB induced immunosuppression at all doses tested. 8 weeks later the mice were resensitised to assess tolerance. Mice exposed to the minimum immunosuppressive dose of ssUVR prior to primary sensitisation were tolerant to re-sensitisation. However, at higher doses of ssUVR, these mice were protected from tolerance. Interestingly, while low doses of UV A caused immunosuppression, even lower doses enhanced the response to the second sensitisation. Higher doses of UVA had no affect. UVB induced tolerance in a dose related manner. Thus, ssUVR only induces immunosuppression and tolerance over a narrow dose range. Both UVA and UVB are immunosuppressive at this dose, while higher doses of UVA protect from the suppressive effects of UVB. Surprisingly very low doses of UVA enhanced memory development. Thus UVR has complex effects on the immune system depending on dose and spectrum.

  • PDF

Protective effects of red orange (Citrus sinensis [L.] Osbeck [Rutaceae]) extract against UVA-B radiation-induced photoaging in Skh:HR-2 mice

  • Yoon Hee Kim;Cho Young Lim;Jae In Jung ;Tae Young Kim;Eun Ji Kim
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.641-659
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: The skin is the outermost organ of the human body and plays a protective role against external environmental damages, such as sunlight and pollution, which affect anti-oxidant defenses and skin inflammation, resulting in erythema or skin reddening, immunosuppression, and epidermal DNA damage. MATERIALS/METHODS: The present study aimed to investigate the potential protective effects of red orange complex H extract (ROC) against ultraviolet (UV)-induced skin photoaging in Skh:HR-2 mice. ROC was orally administered at doses of 20, 40, and 80 mg/kg/day for 13 weeks, along with UV irradiation of the mice for 10 weeks. RESULTS: ROC improved UV-induced skin barrier parameters, including erythema, melanin production, transepidermal water loss, elasticity, and wrinkle formation. Notably, ROC inhibited the mRNA expression of pro-inflammatory cytokines (interleukin 6 and tumor necrosis factor α) and melanogenesis. In addition, ROC recovered the UV-induced decrease in the hyaluronic acid and collagen levels by enhancing genes expression. Furthermore, ROC significantly downregulated the protein and mRNA expression of matrix metalloproteinases responsible for collagen degradation. These protective effects of ROC against photoaging are associated with the suppression of UV-induced phosphorylation of c-Jun NH2-terminal kinase and activator protein 1 activation. CONCLUSIONS: Altogether, our findings suggest that the oral administration of ROC exerts potential protective activities against photoaging in UV-irradiated hairless mice.

Immune Protection Factor of Sunscreens in Humans is Dependent on Protection from UVA and Cannot be Predicted from the Sun Protection Factor

  • Halliday, Gary M.;Poon, Terence S.C.;Damian, Diona L.;Barnetson, Ross St.C.
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.236-239
    • /
    • 2002
  • Sunscreens have been advocated as an important means of preventing skin cancer. UV-induced immunosuppression is important for skin cancer development, yet the effectiveness of sunscreens in protecting the human immune system from UV radiation is unclear. The only currently accepted method of sunscreen rating is the Sun Protection Factor (SPF) based on prevention of erythema. We developed an in vivo non-invasive method for evaluating protection of the human immune system from UV radiation based on recall contact sensitivity to nickel, a common allergen. Using this system we showed that broad-spectrum sunscreens provide greater protection to the immune system than sunscreens which protect from UVB only. UVA was found to be immunosuppressive. We developed this technique to enable the study of solar simulated UV radiation dose responses and determined Immune Protection Factors (IPFs) for six commercially available sunscreens based on limits of protection from the dose response data. We found that the IPF did not correlate with the SPF and that protection from erythema therefore cannot be used to predict protection of the immune system. However, IPF was significantly correlated to the UVA protective capability of the sunscreens, indicating that sunscreen protection from UVA is important for prevention of immunosuppression. We recommend that sunscreens should be rated against their immune protective capability to provide a better indication of their ability to protect against skin cancer.

  • PDF

Comparison of Mycophenolic Acid Production by P. brevicompactum Mutants Induced through UV and NTG Treatments (자외선 및 NTG 돌연변이 유도에 의한 Penicillium brevicompactum 변이주의 Mycophenolic Acid (MPA) 생산성 비교)

  • Um, Byung-Hwan;Choi, Ju-Young;Ha, Byung-Jhip;Kim, Young-Soo;Oh, Kyeong-Keun
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.392-397
    • /
    • 2008
  • Recently, importance of immunosuppression is increasing as internal organ transplant becomes more prevalent with development of medical technology. Mycophenolic acid (MPA) is a selective inhibitor of guanine synthesis and it therefore has antibacterial, antiviral, antitumor and selective immunosuppressive activities. The objective of this study was to maximize MPA productivity through utilizing the MPA generating strain of Penicillium brevicompactum ATCC 16024, by inducing UV mutation and NTG mutation. The highest MPA obtained was 1.146 g/L, 2.051 g/L, and 1.390 g/L from P. brevicompactum UB-3, UB-9, UC-4 respectively mutants derived from UV treatment. P. brevicompactum NC-3 and NA-9 induced from NTG treatment yielded. 575 g/L, 2.238 g/L of MPA production respectively. Mutants capable of the highest observed production of MPA were P. brevicompactum UB-9 and P. brevicompactum NC-3 obtained using the UV and NTG treatments respectively.

Inhibition of Langerhans cell function by UVB radiation

  • Okamoto, Hiroyuki;Mizuno, Kana;Horio, Takeshi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.190-193
    • /
    • 2002
  • The functional disruption of Langerhans cells (LC) by UVB radiation is involved in antigen-specific immunosuppression of contact hypersensitivity. We tested whether UVB radiation inhibits the endocytotic activity of LC, which leads to impaired subsequent migration and maturation. Human monocyte-derived LC that took up lucifer yellow (L Y) or FITC-dextran (Fd) exclusively migrated in response to 6Ckine and matured. Exposing LC to 10-40 mJ/cm$^2$ of UVB radiation reduced their endocytotic activity in fluid phase pinocytosis (measured by uptake of LY) and in receptor-mediated endocytosis (measured by uptake of Fd). Membrane ruffling and CD32 expression were also suppressed by UVB radiation. UVB-irradiated, endocytosing LC had less movement towards 6Ckine, expressed less CD54 and CD86, and had less effective stimulatory activity in allo-MLR than nonirradiated, endocytosing LC. Endocytosis up-regulated TNF-$\alpha$ production by LC, but prior UVB radiation inhibited this enhancement. The finding that impaired endocytosis of LC by UVB radiation inhibits subsequent migration and maturation was also confirmed in murine epidermal cells obtained from unirradiated and 2OmJ/cm$^2$ of UVB-irradiated skin.

  • PDF

Synthesis, Characterization and in Vitro Identification of $N^7-Guanine$ Adduct of 2-Bromopropane

  • Zhao, Long-Xuan;Kim, Eun-Kyung;Lim, Hyun-Tae;Moon, Yoon-Soo;Kim, Nam-Hee;Kim, Tae-Hyung;Choi, Heesung;Chae, Whigun;Jeong, Tae-Cheon;Lee, Eung-Seok
    • Archives of Pharmacal Research
    • /
    • v.25 no.1
    • /
    • pp.39-44
    • /
    • 2002
  • Recently, we have reported that 2-bromopropane might have an immunotoxic potential in rats when exposed for 28 days. In the present studies, the possibility of 2i-deoxyguanosine abduct formation by 2- bromopropane was investigated in vitro to elucidate molecular mechanism of 2-bromopropane-induced immunosuppression. $N^7-Guanine adduct$ of 2'-bromopropane (i.e., $N^7-isopropyl$ guanine) was chemically synthesized and structurally characterized by analysis of UV,$^1H-NMR,{\;}^{13}C-NMR$, COSY and fast atom bombardment mass spectrometry to use as a reference material. Incubation of 2'-deoxyguanosine with an excess amount of 2-bromopropane in PBS buffer solution, pH 7.4, at $37^{\circ}C$ for 16 h, followed by a thermal hydrolysis, produced a detectable amount of $N^7-isopropyl$ guanine by an HPLC and UV analysis. The present results suggest that 2-bromopropane might form a DNA adduct in $N^7-position$ of 2'-deoxyguanosine at 3 Physiological condition.