• Title/Summary/Keyword: UV-blue emission

Search Result 91, Processing Time 0.035 seconds

Optimization of $Nd^{3+}$ ion co-doping in $CaAl_2O_4:\;Eu^{2+}$ blue phosphor ($CaAl_2O_4:Eu^{2+}$ 청색(靑色) 형광체(螢光體)의 $Nd^{3+}$ 도핑 최적화(最適化)에 관한 연구(硏究))

  • Bartwal, Kunwar Singh;Ryu, Ho-Jin
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.46-50
    • /
    • 2007
  • Blue phosphor calcium aluminate, $CaAl_2O_4:Eu^{2+}$ co-doped with $Nd^{3+}$ was prepared by solid state synthesis method. Phosphor materials with 1 mol% $Eu^{2+}$ and varying compositions of $Nd^{3+}$ show high brightness and long persistent luminescence. The synthesized phosphor materials were investigated by powder x-ray diffraction (XRD), SEM, TEM, photoluminescence excitation and emission studies. Broad band UV excited luminescence of the $CaAl_2O_4:Eu^{2+}:Nd^{3+}$ was observed in the blue region (${\lambda}_{max}=440\;nm$) due to transitions from the $4f^65d^1$ to the $4f^7$ configuration of the $Eu^{2+}$ ion. $Nd^{3+}$ ion doping in the phosphor results in long afterglow phosphorescence when the excitation light is cut off.

A facile chemical synthesis of a novel photo catalyst: SWCNT/titania nanocomposite

  • Paul, Rima;Kumbhakar, Pathik;Mitra, Apurba K.
    • Advances in nano research
    • /
    • v.1 no.2
    • /
    • pp.71-82
    • /
    • 2013
  • A simple chemical precipitation technique is reported for the synthesis of a hybrid nanostructure of single-wall carbon nanotubes (SWCNT) and titania ($TiO_2$) nanocrystals of average size 5 nm, which may be useful as a prominent photocatalytic material with improved functionality. The synthesized hybrid structure has been characterized by transmission electron microscopy (HRTEM), energy-dispersive X-ray analysis (EDAX), powder X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. It is clearly revealed that nearly monodispersed titania nanocrystals (anatase phase) of average size 5 nm decorate the surfaces of SWCNT bundles. The UV-vis absorption study shows a blue shift of 16 nm in the absorbance peak position of the composite material compared to the unmodified SWCNTs. The photoluminescence study shows a violet-blue emission in the range of 325-500 nm with a peak emission at 400 nm. The low temperature electrical transport property of the synthesized nanomaterial has been studied between 77-300 K. The DC conductivity shows semiconductor-like characteristics with conductivity increasing sharply with temperature in the range of 175-300 K. Such nanocomposites may find wide applications as improved photocatalyst due to transfer of photo-ejected electrons from $TiO_2$ to SWCNT, thus reducing recombination, with the SWCNT scaffold providing a firm and better positioning of the catalytic material.

UV pumped two color phosphor blend White emitting LEDs

  • Choi, Kyoung-Jae;Park, Joung-Kyu;Kim, Kyung-Nam;Kim, Chang-Hae;Kim, Ho-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.636-639
    • /
    • 2004
  • We have synthesized a $Eu^{2{\cdot}}$ -activated $Sr_3MgSi_2O_8$ blue phosphor and $Ba^{2{\cdot}}$ co-doped $Sr_2SiO_4$ yellow phosphor investigated an attempt to develop white LEDs by combining it with a GaN blue LED chip. Three distinct emission bands from the GaN-based LED and the ($Sr_3MgSi_2O_8$:Eu + $Ba^{2{\cdot}}$ co-doped $Sr_2SiO_4$:Eu) phosphor are clearly observed at 405nm, 455 nm and at around 540 nm, respectively. These three emission bands combine to give a spectrum that appears white to the naked eye. Our results show that GaN (405 nm chip)-based ($Sr_3MgSi_2O_8$:Eu + $Ba^{2{\cdot}}$ co-doped $Sr_2SiO_4$:Eu) exhibits a better luminous efficiency than that of the industrially available product InGaN (460 nm chip)-based YAG:Ce.

  • PDF

Synthesis and characterization of star-shaped imide compounds

  • Jeon, Eunju;Yoon, Tae-Ho
    • Rapid Communication in Photoscience
    • /
    • v.1 no.1
    • /
    • pp.19-20
    • /
    • 2012
  • Novel star-shaped imide compounds containing electron-donating triphenylamine and/or electron-withdrawing bis(trifluoromethyl)phenyl side groups were synthesized via a two-step process. First, 3,6-dibromo-benzene-1,2,4,5-tetracarboxylic acid (2B4BA) was reacted with 4-aminophenyl (diphenylamine) (ATPA) or 3,5-bis(trifluoromethyl)aniline (6FA) by imide reaction. Then, Suzuki coupling reaction was carried out on these compounds with 4-(N,N-diphenylamino)-1-phenyl boronic acid (BTPA) or 3,5-bis(trifluoromethyl)phenyl boronic acid (6FBB), resulting in 3,6-bis[4-(diphenylamino)phenyl]-N,N'-bis[4-(diphenylamino) phenyl]-pyromellitimide (TPTPPI), 3,6-bis[3,5-bis(trifluoro methyl) phenyl]-N,N'-bis[3,5-bis(trifluoromethyl) phenyl]-pyro mellitimide (6F6FPI) or 3,6-bis[4-(diphenylamino)phenyl]-N,N'-bis[3,5-bistrifluoromethyl)phenyl]-pyromellitimide (6FTPPI). The imide compounds obtained were characterized by NMR, FT-IR, DSC, TGA, melting point analyzer, EA, and solubility measurements. In addition, their optical and electrical properties were evaluated by fluorescence spectroscopy, UV-vis spectroscopy, and cyclic voltammetry (CV). 6F6FPI exhibited deep blue emission (443 nm), along with high $T_m$ ($382^{\circ}C$) and relatively high $T_g$ ($148^{\circ}C$).

CharacteristicProperties of Low-k Thin Film Deposited by Sputtering (스퍼터링에 의한 Low-k 박막의 특성)

  • Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3160-3164
    • /
    • 2012
  • To obtain available process at low temperature, SiOC thin film was prepared with various flow rates by using the rf magnetron sputtering, and AZO thin film was also deposited on SiOC film by rf magnetron sputtering system. The optical electrical properties of the SiOC film and SiOC/AZO were analyzed by the uv visible spectrometer and PL spectra. SiOC film on n type Si showed various type emission according to the deposition condition. The SiOC film showed the blue shift with increasing the thickness in PL spectra. AZO/SiOC/Si film had a broad emission characteristic, which is enhanced the efficiency in solar cell.

UV pumped three color phosphor blend White emitting LEDs

  • Choi, Kyoung-Jae;Park, Joung-Kyu;Kim, Kyung-Nam;Kim, Chang-Hae;Kim, Ho-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1338-1342
    • /
    • 2005
  • We have synthesized an $Eu^{2+}$-activated $Sr_3MgSi_2O_8$ blue phosphor and $Ba_2SiO_4$ green phosphor and $Ba^{2+}$ co-doped $Sr_3SiO_5$ red phosphor investigated an attempt to develop white LEDs by combining it with a GaN blue LED $chip(\lambda_{em}=405 nm)$. Three distinct emission bands from the GaN-based LED and the $(Sr_3MgSi_2O_8:Eu\; +\; Ba_2SiO_4:Eu\; +\; Ba^{2+}\; co-doped\; Sr_3SiO_5:Eu)$ phosphor are clearly observed at 460nm, 520 nm and at around 600 nm, respectively. These three emission bands combine to give a spectrum that appears white to the naked eye. Our results show that GaN (405 nm chip)-based $(Sr_3MgSi_2O_8:Eu\; +\; Ba_2SiO_4:Eu\; +\; Ba^{2+}\; co-doped\; Sr_3SiO_5:Eu) exhibits a better luminous efficiency than that of the industrially available product InGaN (460 nm chip)-based YAG:Ce.

  • PDF

Optical Properties of Poly(N-arylcarbazole-alt-aniline) Copolymers For Polymer Light Emitting Devices

  • Wang, Hui;Ryu, Jeong-Tak;Kim, Yeon-Bo;Kwon, Young-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.55-60
    • /
    • 2006
  • Thermally stable and solution-processable poly(N-arylcarbazole-alt-aniline) copolymers with high structural integrity were synthesized in good yields via palladium-catalyzed polycondensation of aniline with corresponding N-arylcarbazole monomers such as N-(2-ethylhexyloxyphenyl)-3,6-dibromocarbazole,bis[6-bromo-N-(2-ethylhexyloxyphenyl)carbazole-3-yl] and N-(4-(2-ethylhexyl)-3,5-dibromomethylene-phenyl) carbazole, respectively. The optical and electrochemical properties of these copolymers were measured and compared with those of poly(N-alkylcarbazole-alt-aniline) copolymer. All synthesized poly(N-arylcarbazole-alt-aniline) copolymers showed maximum UV-Vis absorption peaks at around 300 nm in THF solution, and exhibited maximum photoluminescence peaks in the blue emission range from 430 to 460 nm. It was also found that poly(N-arylcarbazole-alt-aniline) copolymers had wider band gap energy than poly(N-alkylcarbazole-alt-aniline) copolymer.

  • PDF

Optimal Optical Filters of Fluorescence Excitation and Emission for Poultry Fecal Detection

  • Kim, Tae-Min;Lee, Hoon-Soo;Kim, Moon-S.;Lee, Wang-Hee;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.37 no.4
    • /
    • pp.265-270
    • /
    • 2012
  • Purpose: An analytic method to design excitation and emission filters of a multispectral fluorescence imaging system is proposed and was demonstrated in an application to poultry fecal inspection Methods: A mathematical model of a multispectral imaging system is proposed and its system parameters, such as excitation and emission filters, were optimally determined by linear discriminant analysis (LDA). An alternating scheme was proposed for numerical implementation. Fluorescence characteristics of organic materials and feces of poultry carcasses are analyzed by LDA to design the optimal excitation and emission filters for poultry fecal inspection. Results: The most appropriate excitation filter was UV-A (about 360 nm) and blue light source (about 460 nm) and band-pass filter was 660-670 nm. The classification accuracy and false positive are 98.4% and 2.5%, respectively. Conclusions: The proposed method is applicable to other agricultural products which are distinguishable by their spectral properties.

Photoluminescence properties of Mn4+-activated Li2ZnSn2O6 red phosphors

  • Choi, Byoung Su;Lee, Dong Hwa;Ryu, Jeong Ho;Cho, Hyun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.80-83
    • /
    • 2019
  • The Mn4+-activated Li2ZnSn2O6 (LZSO:Mn4+) red phosphors were synthesized by the solid-state reaction at temperatures of 1100-1400 ℃ in air. The synthesized LZSO:Mn4+ phosphors were confirmed to have a single hexagonal LZSO phase without the presence of any secondary phase formed by the Mn4+ addition. With near UV and blue excitation, the LZSO:Mn4+ phosphors exhibited a double band deep-red emission peaked at ~658 nm and ~673 nm due to the 2E → 4A2 transition of Mn4+ ion. PL emission intensity showed a strong dependence on the Mn4+ doping concentration and the 0.3 mol% Mn4+-doped LZSO phosphor produced the strongest PL emission intensity. Photoluminescence emission intensity was also found to be dependent on the calcination temperature and the optimal calcination temperature for the LZSO:Mn4+ phosphors was determined to be 1200 ℃. Dynamic light scattering (DLS) and field-effect scanning electron microscopy (FE-SEM) analysis revealed that the 0.3 mol% Mn4+-doped LZSO phosphor particles have an irregularly round shape and an average particle size of ~1.46 ㎛.

Defect Analysis via Photoluminescence of p-type ZnO:N Thin Film fabricated by RF Magnetron Sputtering

  • Jin, Hu-Jie;So, Soon-Jin;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.202-206
    • /
    • 2007
  • ZnO is a promising material to make high efficient ultraviolet(UV) or blue light emitting diodes(LEDs) because of its large binding energy and energy bandgap. In this study, we prepared ZnO thin films with p-type conductivity on silicon(100) substrates by RF magnetron sputtering in the mixture of $N_2$ and $O_2$. The process was accompanied by low pressure in-situ annealing in $O_2$ at $600^{\circ}C$ and $800^{\circ}C$ respectively. Hall effect in Van der Pauw configuration showed that the N-doped ZnO film annealed at $800^{\circ}C$ has p-type conductivity. Photoluminescence(PL) spectrum of the film annealed at $800^{\circ}C$ showed UV emission related to exciton and bound to donor-acceptor pair(DAP) as well as visible emission related to many intrinsic defects.