• 제목/요약/키워드: UV-absorption

검색결과 1,095건 처리시간 0.025초

돌산갓 김치와 돌산갓 피클의 Glucosinolates의 LC-PDA/MS/MS분석 (LC-PDA/MS/MS Analysis of Glucosinolates in Dolsan Leaf Mustard Kimchi and Dolsan Leaf Mustard Pickles)

  • 오선경;;김기웅;최명락
    • KSBB Journal
    • /
    • 제31권1호
    • /
    • pp.1-7
    • /
    • 2016
  • Changes in the concentrations of glucosinolates and related compounds in different extracts of Dolsan leaf mustard kimchi (DLMK) and Dolsan leaf mustard pickles (DLMP) were during storage investigated. Samples were kept at 0oC for 35 days and collected at 7 day intervals. The leaves and stems of DLMK and DLMP were refluxed for 24 h with 50% acetonitrile, and the extracts were analyzed by LC-PDA/MS/MS. The main glucosinolates detected in DLMK were sinigrin, gluconapoleiferin, glucobrassicanapin, and gluconapin, whereas those in DLMP were sinigrin, gluconapoleiferin, glucobrassicanapin, glucobrassicin, and glucoerucin. Sinigrin concentrations were quantified by UV absorption at 228 nm. Sinigrin concentrations in the leaves and stems of DLMK on the day of preparation were 2.14 mg/g and 2.25 mg/g, respectively, and those on day 35 after preparation were 1.25 mg/g and 1.00 mg/g, respectively. DLMP showed a similar trend: the concentrations in the leaves and stems on the day of preparation were 2.04 mg/g and 0.29 mg/g, respectively, whereas those on day 35 after preparation were 0.59 mg/g and 0.41 mg/g, respectively. Thus, sinigrin concentrations decreased during storage.

말라카이트 그린의 색엷음 현상을 이용한 글리세롤의 정량: 바이오디젤 내 반응물 분석의 적용 가능성 (Quantification of Glycerol by Malachite Green Fading Phenomenon: Application in Reaction By-Product of Biodiesel)

  • 이미화;이영철;신현재
    • KSBB Journal
    • /
    • 제26권5호
    • /
    • pp.471-476
    • /
    • 2011
  • Nowadays biodiesel (fatty acid methyl ester, FAME) has been becoming an important issue as a desired alternative of energy products because of non-toxic, biodegradable properties, and lower exhaust emissions. During esterification of fatty acids or transesterification of oils and fats with short chain alcohols by the alkali-catalyzed methanolysis, FAME and unrefined glycerol are generated. Quantification of glycerol as a by-product is important because of a determinant of biodiesel quality. However, the glycerol analysis by gas chromatography (GC) method has laborious works with sample preparation, long time and cost of sample analysis. Thus, there is a need to analyze glycerol more simply. Herein we demonstrate that the colorimetric assay for glycerol analysis conducted by UV-vis spectrophotometer at the wavelength 617 nm whose peak is maximum intensity of malachite green, resulting in the red-shift occurred proportionally as a function of glycerol amount. Thus, it is considered the solvent media for malachite green fading for biodiesel production: (1) water, (2) MeOH, and (3) EtOH. The resulting findings show that the peak intensity at 617 nm in glycerol-malachite green mixture had a relationship between glycerol concentration and degree of peak shift as increase in pure glycerol concentration approximately at pH 7.0. However, when it was measured the unrefined glycerol concentration by diluting and adjusting with water to buffer (pH 7.0), it was not observed the absorption peak at 617 nm because of impurities and OH ions. In case of glycerol from biodiesel production factories, glycerol concentration could be successfully measured.

PECCP LB 박막을 발광층으로 사용한 유기 발광 다이오드의 특성 (Characteristics of Organic Light-Emitting Diodes using PECCP Langmuir-Blodgett(LB) Film as an Emissive Layer)

  • Lee, Ho-Sik;Lee, Won-Jae;Park, Jong-Wook;Kim, Tae-Wan;Dou--Yol Kang
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.111-114
    • /
    • 1999
  • Electroluminescence(EL) devices based on organic thin films have been attracted lots of interests in large-area light-emitting display. In this stuffy, an emissive layer was fabricated using Langmuir-Blodgett(LB) technique in organic light-emitting (OLEDs). This emissive organic material was synthesized and named PECCP[poly(3.6-N-2-ethylhexyl carbazolyl cyanoterephthalidene)] which has a strong electron donor group and an electron acceptor group in main chain repeated unit. This material has good solubility in common organic solvents such as chloroform. THF, etc, and has a good stability in air. The Langmuir-Blodgett(LB) technique has the advantage of precise control of the thickness down to the molecular scale, In particular, by varying the film thickness it is possible to investigate the metal/polymer interface. Optimum conditions for the LB film deposition are usually determined by investigating a relationship between a surface pressure $\pi$ and an effective are A occupied by one molecule on the subphase. The LB films were deposited on an indium-tin-oxide(ITO) glass at a surface pressure of 10 mN/m and dipping speed of 12 mm/min after spreading PECCP solution on distilled water surphase at room temperature, Cell structure was ITO/PECCP LB film/Alq$_3$/Al. We considered PECCP as a hole -transport layer inserted between the emissive layer and ITO. We also used Alq$_3$ as an emissive layer and an electron transport layer. We measured current-voltage(I-V) characteristics, UV/visible absorption, PL spectrum and EL spectrum of the OLEDs.

  • PDF

Photo-Ames Assay를 이용한 광발암성 예측 (Prediction of Photo-Carcinogenicity from Photo-Ames Assay)

  • Hong Mi Young;Kim Ji Young;Chung Moon Koo;Lee Michael
    • 한국환경성돌연변이발암원학회지
    • /
    • 제25권1호
    • /
    • pp.6-12
    • /
    • 2005
  • Many compounds might become activated after absorption of UV light energy. In some cases, the resulting molecule may undergo further biological reaction of toxicological relevance related especially to the photo-carcinogenicity resulting from photo-genotoxicity. However, no regulatory requirements have been issued with the exception of guideline issued by the Scientific Committee of Cosmetology, Commission of the European Communities (SCC/EEC) on the testing of sunscreens for their photo-genotoxicity. Thus, the objectives of this study are to investigate the utility of photo-Ames assay for detecting photo-mutagens, and to evaluate its ability to predict rodent photo-carcinogenicity. Photo-Ames assay was performed on five test substances that demonstrated positive results in photo-carcinogenicity tests: 8-methoxypsoralen (photoactive substance that forms DNA adducts in the presence of ultraviolet A irradiation), chlorpromazine (an aliphatic phenothiazine an a-adr-energic blocking agent), lomefloxacin (an antibiotic in a class of drugs called fluoroquinolones), anthracene (a tricyclic aromatic hydrocarbon a basic substance for production of anthraquinone, dyes, pigments, insecticides, wood preservatives and coating materials) and retinoic acid (a retinoid compound closely related to vitamin A). Out of 5 test substances, 3 showed a positive outcome in photo-Ames assay. With this limited data set, an investigation into the predictive value of this photo-Ames test for determining the photo-carcinogenicity showed that photo-Ames assay has relatively low sensitivity (the ability of a test to predict carcinogenicity). Thus, to determine the use of in vitro genotoxicity tests for prediction of carcinogenicity,' several standard photo-genotoxicity assays should be compared for their suitability in detecting photo-genotoxic compounds.

  • PDF

Easy and Fast Synthesis of Pd-MWCNT/TiO2 by the Sol-Gel Method and its Recyclic Photodegradation of Rhodamine B

  • Ye, Shu;Ullah, Kefayat;Zhu, Lei;Meng, Ze-Da;Sun, Qian;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제50권4호
    • /
    • pp.251-256
    • /
    • 2013
  • Multiwalled carbon nanotubes (MWCNTs) modified with Pd and $TiO_2$ composite catalysts were synthesized by the sol-gel method followed by solvothermal treatment at low temperature. The chemical composition and surface structure were characterized by X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Photocatalytic recycle degradation experiments were carried out under both UV and visible light irradiation in the presence of MWCNT/$TiO_2$ and Pd-MWCNT/$TiO_2$ composites. As expected, the nanosized Pd-MWCNT/$TiO_2$ photocatalysts had enhanced activity over the non Pd treated MWCNT/$TiO_2$ material in the degradation of a rhodamine B (Rh.B) solution. An increase in photocatalytic activity was observed and attributed to an increase in the photo-absorption effect by MWCNTs and the cooperative effect of Pd and $TiO_2$ nanoparticles. According to the recycled results, the as-prepared Pd-MWCNT/$TiO_2$ sample had a good effect on it.

산소 분압비에 따른 $TiO_2$ 박막의 특성평가 (The properties of $TiO_2$ thin films by oxygen partial pressure)

  • 양현훈;임정명;박중윤;정운조;박계춘
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 센서 박막재료 반도체 세라믹
    • /
    • pp.154-157
    • /
    • 2003
  • $TiO_2$ thin films were fabricated by RF magnetron sputtering system at by controlling deposition times, ratios of $Ar:O_2$ partial presser ratio and substrate conditions. And the surface, cross-section morphology, microstructure, and composition ratio of the films were analyzed by FE-SEM, TEM and XPS. Besides, the optical absorption and transmittance of the $TiO_2$ films were measured by a UV-VIS-NIR Spectrophotometer, and photocatalytic properties were studied by G${\cdot}$C Analyzer & Data Analysis system. As the result, when $TiO_2$ thin film was made at deposition time of 120[min] and $Ar:O_2$ ratio of 60:40, the best structural and optical properties among many thin films could be accepted. The best results of properties were as follows: thickness; 360~370[nm), grain size; 40[nm], gap between two peak binding energy; $5.8{\pm}0.05[eV]$ ($2_{p3/2}$ peak and $2_{p1/2}$ peak of Ti was show at $458.3{\pm}0.05[eV]$ and $464.1{\pm}0.05[eV]$ respectively), binding energy; $530{\pm}0.05[eV]$, optical energy band gap; 3.4[eV].

  • PDF

전하 이동을 이용한 실세스퀴옥산/폴리스티렌 하이브리드 (Silsesquioxane/Polystyrene Hybrid Materials via Charge Transfer Interactions)

  • 최지원;요시키 주조
    • 폴리머
    • /
    • 제31권2호
    • /
    • pp.136-140
    • /
    • 2007
  • Carbazole(electron donor)그룹과 dinitrobenzene(electron acceptor)그룹을 이용하여 전하 이동 작용이 실세스퀴옥산/고분자 하이브리드의 형성 메커니즘으로서 작용할 수 있는지 살펴보는 연구를 진행하였다. 하이브리드 실험은 새롭게 합성된 Poly(carbazole-styrene) (PS/D)와 dinitrobenzyl silsesquioxane (Cube/A)의 톨루엔 용액을 혼합/캐스팅을 하여 만들어진 필름을 이용하였으며 상분리가 없는 투명한 하이브리드 필름이 일부 조건에서 얻어졌다. PS/D및 Cube/A의 $^1H-NMR$분석, 그리고 하이브리드 필름들의 UV 흡수 실험은 실세스퀴옥산에 의한 입체 장애 효과가 없는 조건에서는 acceptor와 donor가 1:1로 전하 이동 착물을 형성할 수 있지만, 상분리가 없는 투명한 실세스퀴옥산 하이브리드는 acceptor/donor의 비율이 0.7 : 1 이하에서 형성된다는 것을 보여주었다. 이 결과들은 또 실세스퀴옥산 한 분자 당 평균 4개의 전하 이동 착물이 형성된다는 하이브리드 나노 구조에 대한 정보도 제공하였다.

Cu-Pc 박막의 성장 조건에 따른 phase transition 현상 및 전기적.광학적 특성

  • 강상백;채영안;윤창선;김미정;김진태;차덕준
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.230-230
    • /
    • 2010
  • 유기물 반도체 화합물인 Cu-Pc(copper(II)-phthalocyanine)는 우수한 전기적 광학적 특성을 가지며, OLED, MISFET등 소자로서의 활용도가 높다. Cu-Pc 화합물은 $\alpha$-phase, $\beta$-phase, $\gamma$-phase를 포함하는 여러 가지 다결정 polymer로 존재할 수 있다. 가장 잘 알려진 구조로는 열적으로 준안정적인 $\alpha$-phase와 열적으로 안정적인 $\beta$-phase가 있다. Cu-Pc 박막의 구조 및 흡수 특성과 전기적 특성에 대한 기술이 확실히 규명되지 않아 본 연구에서는 두께와 열처리 조건에 따른 결정성 및 방향성을 조사하기 위하여 $\alpha$-phase와 $\beta$-phase의 phase transition 현상 및 전기적 광학적 특성을 규명 하고자 한다. 진공증착 방법 중 하나인 PVD 방법의 thermal evaporation deposition을 이용하여 glass, ITO 기판위에 두께와 열처리에 따른 전기적?광학적 특성을 연구하였다. Cu-Pc 박막의 성장두께는 5nm~50nm 이내로 fluxmeter 및 thickness monitor를 이용하여 제어하였다. 5nm~50nm의 두께에 따른 기판온도를 $200^{\circ}C$로 고정하여 전열 처리 및 후열 처리하여 온도에 따른 박막을 성장한 후, 결정 구조 및 특성 변화와 phase transition 분석하였다. 제작된 Cu-Pc의 박막은 $\alpha$-phase와 $\beta$-phase로 구분할 수 있으며, 열처리에 따른 phase transition 현상이 뚜렷함을 알 수 있다. XRD(X-ray diffraction)를 통하여 박막에 대한 결정 구조 분석 및 FE-SEM(field emission scanning electron microscopy)와 AFM(atomic force microscopy)을 이용하여 Cu-Pc 박막의 구조적 결정성과 방향성 등, 표면 상태와 형상구조에 대해 표면의 특성을 측정하며, 광 흡수도(UV-visible absorption spectra)을 이용하여 phase transition 현상에 따른 I-V 특성을 비교분석 하였다.

  • PDF

The effect of thermal anneal on luminescence and photovoltaic characteristics of B doped silicon-rich silicon-nitride thin films on n-type Si substrate

  • Seo, Se-Young;Kim, In-Yong;Hong, Seung-Hui;Kim, Kyung-Joong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.141-141
    • /
    • 2010
  • The effect of thermal anneal on the characteristics of structural properties and the enhancement of luminescence and photovoltaic (PV) characteristics of silicon-rich silicon-nitride films were investigated. By using an ultra high vacuum ion beam sputtering deposition, B-doped silicon-rich silicon-nitride (SRSN) thin films, with excess silicon content of 15 at. %, on P-doped (n-type) Si substrate was fabricated, sputtering a highly B doped Si wafer with a BN chip by N plasma. In order to examine the influence of thermal anneal, films were then annealed at different temperature up to $1100^{\circ}C$ under $N_2$ environment. Raman, X-ray diffraction, and X-ray photoemission spectroscopy did not show any reliable evidence of amorphous or crystalline Si clusters allowing us concluding that nearly no Si nano-cluster could be formed through the precipitation of excess Si from SRSN matrix during thermal anneal. Instead, results of Fourier transform infrared and X-ray photoemission spectroscopy clearly indicated that defective, amorphous Si-N matrix of films was changed to be well-ordered thanks to high temperature anneal. The measurement of spectral ellipsometry in UV-visible range was carried out and we found that the optical absorption edge of film was shifted to higher energy as the anneal temperature increased as the results of thermal anneal induced formation of $Si_3N_4$-like matrix. These are consistent with the observation that higher visible photoluminescence, which is likely due to the presence of Si-N bonds, from anneals at higher temperature. Based on these films, PV cells were fabricated by the formation of front/back metal electrodes. For all cells, typical I-V characteristic of p-n diode junction was observed. We also tried to measure PV properties using a solar-simulator and confirmed successful operation of PV devices. Carrier transport mechanism depending on anneal temperature and the implication of PV cells based on SRSN films were also discussed.

  • PDF

Chemical Doping of $TiO_2$ with Nitrogen and Fluorine and Its Support Effect on Catalytic Activity of CO Oxidation

  • Chakravarthy, G. Kalyan;Kim, Sunmi;Kim, Sang Hoon;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.142.2-142.2
    • /
    • 2013
  • The effect of substrate on catalytic activity of CO oxidation with transition metal Platinum nanoparticles on doped and undoped TiO2 was investigated. Titanium dioxide was doped chemically with non-metal anions including nitrogen and fluorine. Undoped TiO2 was synthesized via simple conventional sol-gel route. Thin films of titania were developed by spin coating technique and the characterization techniques SEM, XRD, UV-Vis Absorption Spectroscopy and XPS were carried out to examine the morphology of films, crystal phase, crystallites, optical properties and elemental composition respectively. XPS analysis from doped TiO2 confirmed that the nitrogen site were interstitial whereas fluorine was doped into TiO2 lattice substitutionally. Catalytic activity systems of Pt/doped-TiO2 and Pt/undoped-TiO2 were fabricated to reveal the strong metal-support interaction effect during catalytic activity of CO oxidation reactions. By arc plasma deposition technique, platinum nanoparticles with mean size of 2.7 nm were deposited on the thin films of doped and undoped titanium dioxide. The CO oxidation was performed with 40 Torr CO and 100 Torr O2 with 620 Torr He carrier gas. Turn over frequency was observed two to three folds enhancement in case of Pt/doped TiO2 as compared to Pt/TiO2. The electronic excitation and the oxygen vacancies that were formed with the doping process were the plausible reasons for the enhancement of catalytic activity.

  • PDF