• Title/Summary/Keyword: UV-Visible Spectrometry

Search Result 44, Processing Time 0.019 seconds

Effects of Hole Transport Layer Using Au-ionic Doping SWNT on Efficiency of Organic Solar Cells

  • Min, Hyung-Seob;Jeong, Myung-Sun;Choi, Won-Kook;Kim, Sang-Sig;Lee, Jeon-Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.434-434
    • /
    • 2012
  • Despite recent efforts for fabricating flexible transparent conducting films (TCFs) with low resistance and high transmittance, several obstacles to meet the requirement of flexible displays still remain. Indium tin oxide (ITO) thin films, which have been traditionally used as the TCFs, have a serious obstacle in TCFs applications. SWNTs are the most appropriate materials for conductive films for displays due to their excellent high mechanical strength and electrical conductivity. Recently, it has been demonstrated that acid treatment is an efficient method for surfactant removal. However, the treatment has been reported to destroy most SWNT. In this work, the fabrication by the spraying process of transparent SWNT films and reduction of its sheet resistance by Au-ionic doping treatment on PET substrates is researched. Arc-discharge SWNTs were dispersed in deionized water by adding sodium dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWNT was spray-coated on PET substrate and dried on a hotplate. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then was doped with Au-ionic doping treatment, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. This was confirmed and discussed on the XPS and UPS studies. We show that 87 ${\Omega}/{\Box}$ sheet resistances with 81% transmittance at the wavelength of 550 nm. The changes in electrical and optical conductivity of SWNT film before and after Au-ionic doping treatments were discussed. The effects of hole transport interface layer using Au-ionic doping SWNT on the performance of organic solar cells were investigated.

  • PDF

Improvement of light scattering properties of Ag/ZnO back-reflectors for flexible silicon thin film solar cells (플렉서블 실리콘 박막 태양전지용 Ag/ZnO 후면반사막의 광산란 특성 향상)

  • Baek, Sanghun;Lee, Jeong Chul;Park, Sang Hyun;Song, Jinsoo;Yoon, Kyung Hoon;Wang, Jin-Suk;Cho, Jun-Sik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.97.1-97.1
    • /
    • 2010
  • 유연금속기판위에 DC 마그네트론 스퍼터링을 이용하여 Ag/ZnO 이중구조의 후면반사막을 증착하고 Ag 표면조도 변화에 따른 후면반사막의 반사특성 변화와 플렉서블 비정질 실리콘 박막 태양전지의 셀 특성에 미치는 영향을 조사하였다. Substrate구조를 갖는 플렉서블 실리콘 박막 태양전지에서는 실리콘 박막 광흡수층의 상대적으로 낮은 광 흡수율로 인하여 입사광에 대한 태양전지 내에서의 광 산란 및 포획이 태양전지 효율을 증대시키는데 매우 중요한 역할을 하는 것으로 알려져 있다. 플렉서블 실리콘 박막 태양전지에서의 후면반사막은 광 흡수층에서 흡수되지 않는 입사광을 다시 반사시켜 광 흡수를 증대시키며 이때 후면반사막 표면에서 반사 빛을 효율적으로 산란시켜 이동경로를 증대시킴으로써 광 흡수율을 더욱 향상시킬 수 있다. 본 연구에서는 유연금속 기판위에 Ag와 ZnO:Al($Al_2O_3$ 2.5wt%) 타겟을 사용한 DC 마그네트론 스퍼터링법으로 Ag/AZO 이중구조의 후면반사막을 제조하고, Ag 박막의 표면형상 변화와 이에 따른 후면반사막의 반사도 변화를 비교, 분석하였다. 증착 조건 변화에 따른 표면 형상 및 반사 특성은 Atomic Force Mircroscope(AFM), Scanning electron miroscopy(SEM), UV-visible-nIR spectrometry를 통하여 분석하였다. 서로 다른 표면 거칠기를 갖는 후면반사막 위에 n-i-p구조의 a-Si:H 실리콘 박막 태양전지를 제조한 후 태양전지 동작 특성에 미치는 영향을 조사하였다. n,p층은 13.56MHz PECVD, i층은 60MHz VHF CVD를 사용하여 각각 제조 하였으며, Photo I-V, External Quantum Efficiency(EQE) 분석을 통하여 태양전지 특성을 조사 하였다. SEM 분석결과 공정 온도가 증가 할수록 Ag 박막의 표면 결정립 크기도 증가하였으며, AFM분석을 통한 Root-mean-square(Rms)값은 상온에서 $500^{\circ}C$로 증착온도가 증가함에 따라 6.62nm에서 46.64nm까지 증가하였다. Ag 박막의 표면 거칠기 증가에 따라 후면반 사막의 확산 반사도도 함께 증가하였다. 공정온도 $500^{\circ}C$에서 증착된 후면반사막을 사용하여 a-Si:H 태양전지를 제조하였을 때 상온에서 제조한 후면반사막에 비하여 단락전류밀도 (Jsc)값은 9.94mA/$cm^2$에서 13.36mA/$cm^2$로 증가하였으며, 7.6%의 가장 높은 태양전지 효율을 나타내었다.

  • PDF

Removal of TNT Reduction Products via Oxidative-Coupling Reaction Using Manganese Oxide (망간산화물을 이용한 TNT 환원부산물의 산화-결합반응에 의한 제거 연구)

  • Kang, Ki-Hoon;Lim, Dong-Min;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.476-485
    • /
    • 2005
  • In this study, abiotic transformation of TNT reduction products via oxidative-coupling reaction was investigated using Mn oxide. In batch experiments, all the reduction products tested were completely transformed by birnessite, one of natural Mn oxides present in soil. Oxidative-coupling was the major transformation pathway, as confirmed by mass spectrometric analysis. Using observed pseudo-first-order rate constants with respect to birnessite loadings, surface area-normalized specific rate constants, $k_{surf}$, were determined. As expected, $k_{surf}$ of diaminonitrotoluenes (DATs) ($1.49{\sim}1.91\;L/m^2{\cdot}day$) are greater about 2 orders than that of dinitroaminotoluenes (DNTs) ($1.15{\times}10^{-2}{\sim}2.09{\times}10^{-2}\;L/m^2{\cdot}day$) due to the increased number of amine group. In addition, by comparing the value of $k_{surf}$ between DNTs or DATs, amino group on ortho position is likely to be more preferred for the oxidation by birnessite. Although cross-coupling of TNT in the presence of various mediator compounds was found not to be feasible, transformation of TNT by reduction using $Fe^0$ followed by oxidative coupling using Mn oxide was efficient, as evaluated by UV-visible spectrometry.

A Study on Migration of Heavy Metals from Kitchen Utensils Including Glassware, Ceramics, Enamel, Earthenware and Plastics (유리제 등 조리기구 중 중금속 이행에 관한 연구)

  • Choi, Jae-Chon;Park, Se-Jong;Goh, Hyeah;Lee, Ju Yeun;Eom, Mi Ok;Kim, Meehye
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.334-339
    • /
    • 2014
  • The purpose of our study was to investigate the migration level of lead (Pb), cadmium (Cd), antimony (Sb), arsenic (As), hexavalent chromium ($Cr^{6+}$) and mercury (Hg) from cookwares into food simulants and to evaluate the safety of each heavy metals. The test articles for heavy metals were glassware, ceramics, enamel, earthenware, polypropylene and polyethylene cookwares for Pb and Cd, enamel for Sb, earthenware for As, polyethylene and polypropylene cookwares for $Cr^{6+}$ and Hg. All the article samples of 391 intended for contact with foods were purchased in domestic markets. Pb, Cd, Sb and As were analyzed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), $Cr^{6+}$ by UV visible spectrophotometer and Hg by mercury analyzer. The migration levels of heavy metals in all the samples were within the migration limits of Ministry of Food and Drug Safety (MFDS). As a result of safety evaluation, our results showed that the estimated daily intakes (EDI, mg/kg bw/day) were $9.12{\times}10^{-6}$ and $8.83{\times}10^{-7}$ for Pb and Cd from ceramics and $1.19{\times}10^{-5}$, $1.23{\times}10^{-5}$ and $7.52{\times}10^{-6}$ for Pb, Cd and Sb from enamel. Tolerable daily intakes (TDI, mg/kg bw/day) were established respectively as 0.0036, 0.00081, 0.0021, and 0.0006 for Pb, Cd, As and Hg by JECFA (Joint FAO/WHO Expert Committee on Food Additives), as 0.0060 for Sb by WHO (World Health Organization). When comparing with TDIs, the EDIs accounted for 0.25% and 0.11% for Pb and Cd from ceramics and 0.33%, 1.52% and 0.13% for Pb, Cd and Sb from enamel.