• Title/Summary/Keyword: UV-Visible

Search Result 1,264, Processing Time 0.037 seconds

The characteristics of Mn-TiO2 catalyst for visible-light photocatalyst (Mn-TiO2 촉매의 가시광촉매 특성)

  • Kim, Moon-Chan
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.493-502
    • /
    • 2011
  • The catalyst works for visible-light region was characterized. Toluene, xylene, MEK and ammonia were used as reactants. The decomposition efficiency was compared between visible-light photocatalyst and UV-light one. UV-photocatalyst can be activated with UV-light wave length of 280~360 nm. However, visible-light photocatalyst can be activated with visible wave length of 400~750 nm. This result was found by using UV-Vis absorbance. A lot of materials were doped to visible light photocatalyst in order to increase its performance. Platinum was added to visible light photocatalyst with manganese in order to increase performance of the visible light photocatalyst. MTMS (Methyl tri methoxy silane) was used as a binder. Contact angle was analyzed varying with amount of binder. Contact angle was increased with increasing the amount of MTMS. As a result, the hydrophilic property of photocatalyst with MTMS binder was decreased due to its hydrophobic one. And Mn-$TiO_2$ catalyst had an excellent anti-bacterial property.

A Study on the Reduction of VOCs Generated from Vehicle Interior Parts and Materials Using Visible-light Responsive Photocatalyst (가시광촉매를 이용한 자동차 내장재로부터 발생하는 VOCs의 저감연구)

  • Choi, Sei-Young;Yang, Seung-Gi
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.209-215
    • /
    • 2013
  • On this study, visible-light responsive photocatalyst prepared by sol-gel method was evaluated the effect of the reduction of volatile organic compounds (VOCs) occurred in vehicle interior and its property was examined. According to UV/visible result, visible-light responsive photocatalyst was found that the UV-visible peak is red shift at 420nm, is sensitive in the visible light region. With vehicle interior parts and materials coated visible-light responsive photocatalyst, VOCs was measured by GC/MS. Measuring the VOCs generated from vehicle interior parts and materials, the reduction of VOCs was confirmed.

A Study on the Effect on UV Exposure in Coastal Buildings (연안건축물의 자외선 노출에 따른 안전성 연구)

  • Kim, Taehwan;Uh, Jesun
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.195-205
    • /
    • 2021
  • Purpose: The ultraviolet reflectance and transmittance of coastal building materials are one of the important factors of ultraviolet radiation in and out of coastal building. In this research, the ultraviolet spectral reflectance of many kinds of building materials was measured. Also, the relationships with the lightness, roughness, and chromaticity, which are surface characteristics, were reviewed and suggested. Method: In this study, according to the CIE classification, the ultraviolet region was defined as short-wavelength region UV-C(10nm~280nm), medium-wavelength region UV-B (280-315 nm), and long-wavelength region UV-A (315-400nm), and the visible light region was defined as (400nm~780nm). Spectrophotometer was used to continuously measure the reflectance from the ultraviolet region to the visible light region. Results: From the measurement results, the ultraviolet reflectance on Wood was shown to be about Visible 55-68%, UV-A* 7-12%, and UV-B 4-5%. Wall tiles are about Visible18-40%, UV-A* 8-20%, and UV-B* 7-8%. That on concrete was shown to be about Visible 37%, UV-A* 28%, and UV-B*19%. Conclusion: The ultraviolet reflectance can be estimated by visible reflectance. Also, it is important to select a variety of materials according to the application when blocking UV.

Studies about Visible Light Distribution in PDP Cells with 3-dimesional Optical Code

  • Eom, Chul-Whan;Kang, Jung-Won
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.582-584
    • /
    • 2007
  • In order to improve the accuracy of simulated results, new UV source was designed. Previously the optical simulation was performed with the symmetric planar UV source. To design new UV source, UV distribution from the plasma fluid code was implanted to the 3-dimensional optical code to generate the visible light distribution. The results from planar UV source and new UV source were compared with the ICCD (Intensified CCD) image in real PDP cell and analyzed the variation of geometries and optical properties.

  • PDF

Polymer Eyeglass Lens with Ultraviolet & High-Energy Visible Light Blocking Function for Eye Health (자외선 및 고에너지 가시광 차단 기능을 갖는 눈 건강을 위한 폴리머 안경렌즈)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.10-15
    • /
    • 2020
  • Ultraviolet rays, which have wavelengths smaller than 400 nm, are very harmful to the eyes. Recently, high-energy visible light was also revealed to be harmful to retinal cells. Therefore, polymer eyeglass lenses that can block UV and high-energy visible light are needed for eye health. In this study, high-refractive-index polymer eyeglass lens, n=1.67, were manufactured using the injection-mold method with the m-xylene diisocyanate monomer, 2,3-bis((2-mercaptoethyl)thio)-1-propanethiol monomer, benzotriazole UV absorber, release of alkyl phosphoric ester, dye mixture of CI solvent violet 13, and catalyst of dibutyltin dichloride mixture. A multi-layer anti-reflection coating was applied to manufactured polymer eyeglass lenses for both sides using an E-beam evaporation system. The optical properties of the manufactured lenses with the UV and high-energy visible light-blocking function were analyzed by UV-visible spectrophotometry. As a result, the polymer eyeglass lens with a UV absorber of 0.5 wt. % blocked 99% of UV and high-energy visible light shorter than 411 nm. The average transmittance of the polymer eyeglass lens with a UV absorber of 0.5wt.% was 97.9% in the range of 460 ~ 660 nm for photopic eye sensitivity higher than 10%. Therefore, clear image acquisition in photopic vision is possible.

A Novel Ultraviolet Sensor using Photoluminescent Porous Silicon (광 루미네슨스 다공질 실리콘을 이용한 새로운 자외선 센서)

  • Min, Nam-Gi;Go, Ju-Yeol;Gang, Cheol-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.9
    • /
    • pp.444-449
    • /
    • 2001
  • In this paper, a novel ultraviolet sensor is presented based on a photoluminescent porous silicon. Porous silicon layer was formed by chemical etching of surface of pn junction in a $HF(48%)-HNO_3(60%)-H_20$ solution. Incident ultraviolet(UV) light is converted to visible light by photoluminescent porous silicon layer, and then this visible light generates electron-hole pairs in the pn junction, which produces a photocurrent flow through the device. In order to maximize detection efficiency, the peak sensitivity wavelength of the pn junction diode was matched with the peak wavelength of Photoluminescence from porous silicon layer. The porous silicon ultraviolet sensor showed a large output current as UV intensity increases and but very low sensitivity to visible light. The detection sensitivity of porous silicon sensor was calculated as 2.91mA/mW. These results are expected to open up a possibility that the present porous silicon sensor can be used for detecting UV light in a visible background, compared to silicon UV detectors which have an undesirable response to visible light.

  • PDF

Synthesis of CdSe-TiO2 Photocatalyst and Their Enhanced Photocatalytic Activities under UV and Visible Light

  • Lim, Chang-Sung;Chen, Ming-Liang;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1657-1661
    • /
    • 2011
  • In this study, CdSe-$TiO_2$ photocatalyst were synthesized by a facile solvothermal method and characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and UV-vis diffuse reflectance spectrophotometer. The photocatalytic activity was investigated by degrading methylene blue (MB) in aqueous solution under irradiation of UV light as well as visible light. The absorbance of degraded MB solution was determined by UV-vis spectrophotometer. The results revealed that the CdSe-$TiO_2$ photocatalyst exhibited much higher photocatalytic activity than $TiO_2$ both under irradiation of UV light as well as visible light.

UV and visible emission intensity control of ZnO thin films for light emitting device applications (발광소자 응용을 위한 ZnO 박막의 자외선 및 가시광 발광 세기 제어)

  • Kang, Hong-Seong;Shim, Eun-Sub;Kang, Jeong-Seok;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.108-111
    • /
    • 2001
  • ZnO thin films on (001) sapphire substrates have been deposited by pulsed laser deposition(PLD) technique for light emitting device applications. We have controlled the emission intensity of UV and visible light, depending on film thickness and various post-annealing time. UV emission became strong as the thickness of ZnO thin films increased. The intensity of visible light was strong as post-annealing temperature increased. The optical properties of the ZnO thin films were characterized by PL(photoluminescence) and the structural properties of the ZnO were characterized by XRD for the application of ZnO light emission device.

  • PDF

The Analysis on the Oil Deterioration of Pole-Transformer by Non-Destructive and UV/Visible Method (비파괴 및 비색법에 의한 주상변압기 절연유의 경년열화 분석)

  • 곽회로;남영우;윤영자;권혁일;이동준;송일근;권동진
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.115-117
    • /
    • 1995
  • This paper describes the O.T aging analysis by non-destructive electrical and UV/visible method. Non-destructive diagnosis method is tan8 test. Also the new method of the aging analysis, UV/visible method was introduced in this paper and compared with the non-destructive electrical method. The UV/visible test could be useful method for the O.T aging electrical diagnosis such as non-destructive electrical method.

  • PDF

UV and visible emission intensity control of ZnO thin films for light emitting device applications (발광소자 응용을 위한 ZnO 박막의 자외선 및 가시광 발광 세기 제어)

  • 강홍성;심은섭;강정석;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.108-111
    • /
    • 2001
  • ZnO thin films on (001) sapphire substrates knave been deposited by pulsed laser deposition(PLD) technique for light emitting device applications. We have controlled the emission intensity of UV and visible light, depending on film thickness and various post-annealing time. UV emission became strong as the thickness of ZnO thin films increased. The intensity of visible light was strong as post-annealing temperature increased. The optical properties of the ZnO thin films were characterized by PL(photoluminescence) and the structural properties of the ZnO were characterized by XRD for the application of ZnO light emission device.

  • PDF