• Title/Summary/Keyword: UV-O3

Search Result 1,589, Processing Time 0.029 seconds

Research on the Colorants Extraction from Black Cowpea Seed Coats and their Storage Stability (검정동부 종피에서의 색소 추출과 추출색소의 저장 안정성 연구)

  • Jung, Yang Sook;Choi, Kyung-Jin;Kang, Hang-Won;Bae, Do-Gyu
    • Korean Journal of Plant Resources
    • /
    • v.24 no.5
    • /
    • pp.499-506
    • /
    • 2011
  • The purpose of this study was to search available resources for new natural colorants. The extraction efficiency of colorants from black cowpea seed coats and their storage stability were examined according to the various extraction and storage conditions in this study. The results obtained were as follows: the optical density (O.D.) values of the extracted colorants increased with increasing extract time and temperature. Extraction at pH 4 was seen to be the most efficient among the various pH conditions. The color of the extract solutions were seen to change with variation in pH, for example, anthocyanins display color changes from orange-red, to orange, to blue, to greenish-blue at pH 3.0, 4.0-6.0, 7.0 and 9.0-11.0, respectively. The color changes of the extract solutions over various storage periods were determined using UV/Vis spectra these color changes indicate characteristic absorption patterns and a discoloration index which indicates the rate of absorbance (532 nm/454 nm). Methionine addition influenced the storage stability of the colorant solutions and this addition led to better storage stability than non-addition. In paper chromatography of juice extracted colorant, a long stripe was seen on development. Among three colorants obtained via paper chromatography according to development rate, at least two different colorants were mixed indicated by the appearance, or not, of a shoulder at 552 nm depending on the extent of development.

대면적 기판 위에서의 서브마이크로미터 주기와 크기를 갖는 홀 패턴 형성을 위한 포토리소그라피 공정 최적화

  • Kim, Do-Hyeong;Bae, Si-Yeong;Lee, Dong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.244-245
    • /
    • 2010
  • 최근 광전자 분야에서는 미래 에너지 자원에 대한 관심과 함께 GaN 기반 발광다이오드 및 태양전지 연구가 활발히 진행되고 있다. GaN는 높은 전자 이동도와 높은 포화 속도 등의 광전자 소자에 유리한 특성을 가지고 있으나, 고 인듐 함유량과 막질의 우수한 특성을 동시에 구현하는 것은 매우 어렵다. 이를 극복하기 위한 방법으로써 선택 영역 박막 성장법(Selective Area Growth)은 마스크 패터닝을 통해 제한된 영역에서만 박막을 성장하는 방법으로써 GaN의 막질을 향상 시킬 수 있는 방법으로 주목받고 있다. 본 논문에서는 대면적 기판에서 GaN의 막질 향상뿐만 아니라 고인듐 InGaN 박막 성장을 위하여 서브마이크로미터 주기와 크기를 갖는 홀 패턴을 포토리소그라피 공정 최적화를 통해 구현할 수 있는 방법에 대해 논의한다. 그림. 1은 사파이어 기판 위에 선택 영역 박막 성장법을 이용하여 성장한 n-GaN/활성층/p-GaN의 구조를 나타낸 그림이다. 이를 통하여 서브마이크로미터 스케일의 반극성 InGaN면 위에 높은 인듐 함유량을 가지면서도 우수한 특성을 갖는 박막을 얻을 수 있다. 본 실험을 위하여 사파이어 기판 위에 SiO2를 증착한 후 포토레지스트(AZ5206)을 도포하고 포토리소그라피 공정을 진행하여 2um 크기 및 간격을 갖는 패턴을 형성했다. 그림. 2는 AZ5206에 UV를 조사(5초)하고 현상(23초)한 패턴을 윗면(그림. 2(a))과 $45^{\circ}$ 기울인 면(그림. 2(b)) 에서 본 SEM(Scanning Electron Microscope) 사진이다. 이를 통해 약 2.2um의 홀 패턴이 선명하게 형성 됨을 볼 수 있다. 그 후 수백나노 직경의 홀을 만들기 위해서 리플로우 공정을 수행한다. 그림. 3은 리플로우 온도에 따른 패턴의 홀 모양을 AFM(Atomic Force Microscope)을 이용하여 측정한 표면의 사진이다. 이를 통해 2차원 평면에서 리플로우 온도 및 시간에 따른 변화를 볼 수 있다. 그림.3의 (a)는 리플로우 공정을 진행하기 전 패턴이고, (b)는 $150^{\circ}C$에서 2분, (c)는 $160^{\circ}C$에서 2분 (d)는 $170^{\circ}C$에서 2분 동안 리플로우 공정을 진행한 패턴이다. $150^{\circ}C$$160^{\circ}C$에서는 직경에 큰 변화가 없었고, $160^{\circ}C$에서는 시료별 현상 시간 오차에 따라 홀의 크기가 커지는 경향이 나타났다. 그러나 $170^{\circ}C$에서 2분간 리플로우 한 시료 (그림. 3(d))의 경우는 홀의 직경이 ~970nm 정도로 줄어든 것을 볼 수 있다. 홀의 크기를 보다 명확히 표현하기 위해 그림.3에 대응시켜 단면을 스캔한 그래프가 그림.4에 나타나 있다. 그림.4의 (a) 및 (b)의 경우 포토레지스트의 높이 및 간격이 일정하므로, 리플로우에 의한 영향은 거의 없었다. 그림. 4(c)의 경우 포토레지스트의 높이가 그림.4(a)에 비해 ~25nm 정도 낮은 것으로 볼 때, 과도 현상 및 약간의 리플로우가 나타났을 가능성이 크다. 그림. 4(d)에서는 ~970nm의 홀 크기가 나타나서 본 연구에서 목표로 하는 나노 홀 크기에 가장 가까워짐을 확인할 수 있었다. 따라서, $170^{\circ}C$ 이상의 온도와 2분 이상의 리플로우 시간 조건에서 선택 영역 성장을 위한 나노 홀 마스크의 크기를 제어할 수 있음을 확인하였다.

  • PDF

Preparation and Properties of Phytosphingosine Ascorbate with Retaining Skin Development Effects (피부 활성을 갖는 Phytosphingosine Ascorbate의 합성)

  • Min, Seok-Kee;Jin, Yong-Hoon;Park, Woo-Jung;Eom, Sang-Yong;Kim, Jong-Heon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.167-172
    • /
    • 2004
  • In the human skin, vitamin C (L -ascorbic acid) that is well known as the activated materials has effects that is skin anti-aging and wrinkle repair by giving impetus to collagen biosynthesis and anti-oxidation, and that is the sun screen, a wound recovering, inhibition melanogenesis and so on. In spite of its effects, vitamin C has the defects of the skin stimulation and easily oxidized instability by water, air, heat and light. For solving their matters, many investigation is advanced and its results are synthesized the various vitamin C derivatives. And yet they have not solved the unstable property of vitamin C and were still insufficient for the comparing with the effect of the pure vitamin C itself. In this study, in order to prepare vitamin C derivative of being improved the stability and to apply vitamin C effect in the skin, we prepared new vitamin C derivative, phytosphingosine ascorbate, by using phytosphingosine, one of sphingolipids, which have a distinguished skin affinity. Phytosphingosine ascorbate can be prepared as the ionic bond between amine group (-NH$_2$) of phytosphingosine and hydroxy group (-OH) of vitamin C by way of the relatively simple reaction. So the structure and properties of the synthesized phytosphingosine ascorbate was confirmed the use of elemental analysis (C 58.3 : H 9.3 : N 2.8 : O 29.5), MALDI TOF-MS (Mw=492.58), Ultraviolet spectra (268.5nm), lH NMR, FT-IR spectra, thermal analysis (m.p=l54$^{\circ}C$), HPLC and so on. And we could confirm the anti-bacterial and anti-oxidation effects. Based on these results, we could confirm to prepare a new material that was expected of both effects of vitamin C and phytosphingosine and that is improved properties of vitamin C.

Development of the Most Optimized Ionizer for Reduction in the Atmospheric Pressure and Inert Gas Area (감압대기 및 불활성가스 분위기에서 적합한 정전기 제거장치의 개발)

  • Lee, Dong Hoon;Jeong, Phil Hoon;Lee, Su Hwan;Kim, Sanghyo
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.42-46
    • /
    • 2016
  • In LCD Display or semiconductor manufacturing processes, the anti-static technology of glass substrates and wafers becomes one of the most difficult issues which influence the yield of the semiconductor manufacturing. In order to overcome the problems of wafer surface contamination various issues such as ionization in decompressed vacuum and inactive gas(i.e. $N_2$ gas, Ar gas, etc.) environment should be considered. Soft X ray radiation is adequate in air and $O_2$ gas at atmospheric pressure while UV radiation is effective in $N_2$ gas Ar gas and at reduced pressure. At this point of view, the "vacuum ultraviolet ray ionization" is one of the most suitable methods for static elimination. The vacuum ultraviolet can be categorized according to a short wavelength whose value is from 100nm to 200nm. this is also called as an Extreme Ultraviolet. Most of these vacuum ultraviolet is absorbed in various substances including the air in the atmosphere. It is absorbed substances become to transit or expose the electrons, then the ionization is initially activated. In this study, static eliminator based on the vacuum ultraviolet ray under the above mentioned environment was tested and the results show how the ionization performance based on vacuum ultraviolet ray can be optimized. These vacuum ultraviolet ray performs better in extreme atmosphere than an ordinary atmospheric environment. Neutralization capability, therefore, shows its maximum value at $10^{-1}{\sim}10^{-3}$ Torr pressure level, and than starts degrading as pressure is gradually reduced. Neutralization capability at this peak point is higher than that at reduced pressure about $10^4$ times on the atmospheric pressure and by about $10^3$ times on the inactive gas. The introductions of these technology make it possible to perfectly overcome problems caused by static electricity and to manufacture ULSI devices and LCD with high reliability.

Antibacterial and Antioxidative Activity of Lespedeza cuneata G. Don Extracts (비수리 추출물의 항균 및 항산화 활성)

  • Lee, Hye-Jin;Lim, Gyu-Nam;Park, Min-A;Park, Soo-Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.63-69
    • /
    • 2011
  • In this study, the antibacterial activity and the antioxidative effects, inhibitory effects on tyrosinase of Lespedeza cuneata G. Don extracts were investigated. MIC value of ethyl acetate fraction from L. cuneata G. Don on P. ovale (0.125%) showed that the antibacterial activity of the ethyl acetate fraction was higher than methyl paraben. The aglycone fraction of L. cuneata G. Don (14.63 ${\mu}g$/mL) showed the most prominent the free radical (1,1-diphenyl-2-picryl-hydrazyl, DPPH) scavenging activity ($FSC_{50}$). Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of L. cuneata G. Don fraction on $Fe^{3+}$-EDTA/$H_2O_2$ system were investigated using the luminol-dependent chemiluminescence assay. The aglycone fraction of L. cuneata G. Don (0.07 ${\mu}g$/mL) showed the most prominent ROS scavenging activity. The protective effects of extract/fractions of L. cuneata G. Don on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. The L. cuneata G. Don extracts suppressed photohemolysis in a concentration dependent manner (1 ~ 50 ${\mu}g$/mL). The inhibitory effects ($IC_{50}$) of L. cuneata G. Don extracts on tyrosinase were determined with ethyl acetate fraction (104.83 ${\mu}g$/mL) and aglycone fraction (27.55 ${\mu}g$/mL) of L. cuneata G. Don extract. These results indicate that L. cuneata G. Don extract/fractions can function as high potential as bactericide against the pathogenic bacteria and antioxidant in biological systems, particularly skin exposed to UV radiation by scavenging $^1O_2$ and other ROS, and protect cellular membranes against ROS. Extract/fractions of L. cuneata G. Don could be applicable to new functional cosmetics for antiaging, antioxidant, and antibacterial activity.

Antioxidative Activities and Antiaging Effects of Geum aleppicum Jacq. Extracts (큰뱀무 추출물의 항산화 활성 및 항노화에 관한 연구)

  • Kim, Min-Ji;Yang, Hyun-Gab;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.2
    • /
    • pp.191-198
    • /
    • 2011
  • In this study, antioxidative effects and inhibitory effects of Geum aleppicum Jacq. extracts on tyrosinase and elastase were investigated. The ethyl acetate fraction of G. aleppicum Jacq. extract ($4.70\;{\mu}g$/mL) showed the most prominent free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activity (FSC50). Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of some G. aleppicum Jacq. extracts on ROS generated in $Fe^{3+}-EDTA/H_2O_2$ system were investigated using the luminol-dependent chemiluminescence assay. The ethyl acetate fraction showed the most prominent ROS scavenging activity ($0.22 \;{\mu}g$/mL). The protective effects of extract/fraction of G. aleppicum Jacq. against the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. The G. aleppicum Jacq. extracts suppressed photohemolysis in a concentration dependent manner ($1{\sim}25{\mu}g$/mL), particularly the ethyl acetate fraction exhibited the most prominent celluar protective effect (${\tau}_{50}$, 416.20 min at $10 \;{\mu}g$/mL). The inhibitory effect of G. aleppicum Jacq. extracts on tyrosinase and elastase were investigated to assess their whitening and anti-winkle efficacy. The half maximal inhibitory concentration ($IC_{50}$) of the ethyl acetate fraction on tyrosinase was $95.23\;{\mu}g$/mL. The $IC_{50}$ of 50 % ethanol extract and the ethyl acetate fraction on elastase were $6.27 \;{\mu}g$/mL and $4.31 \;{\mu}g$/mL, respectively. These results indicate that extract/fraction of G. aleppicum Jacq. can function as antioxidants in biological systems, particularly skin exposed to UV radiation by scavenging $^1O_2$ and other ROS, and protect cellular membranes against ROS. Especially the ethyl acetate fraction of G. aleppicum Jacq. extracts could be applicable to new functional cosmetics for antioxidant, antiaging.

Cellular Protective Effects of Peanut Sprout Root Extracts (땅콩나물 뿌리 추출물의 세포 보호 효과)

  • Jo, Na Rae;Park, Chan Il;Park, Chae Won;Shin, Dong Han;Hwang, Yoon Chan;Kim, Yong Hyun;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.183-189
    • /
    • 2012
  • In this study, the cellular protective effect and antioxidative property of peanut sprout root extracts were investigated. Cellular protective effects of peanut sprout root extracts on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. The ethyl acetate fraction of extracts exhibited a cellular protective effect in a concentration dependent manner. Particularly, the aglycone fraction of extracts showed prominent cellular protective effects in a concentration range (5~50 ${\mu}g/mL$). They are more effective than that of (+)-${\alpha}$-tocopherol, known as a lipid peroxidation chain blocker. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of peanut sprout root extracts on ROS generated in $Fe^{3+}$-EDTA/$H_2O_2$ system were investigated using the luminol-dependent chemiluminescence assay. The ethyl acetate fraction of extracts ($OSC_{50}$; 1.59 ${\mu}g/mL$) showed a similar ROS scavenging activity compare with that of L-ascorbic acid (1.50 ${\mu}g/mL$), known as a strong antioxidant. On the other hand, the order of free radical (1,1-diphenyl-2-picrylhydraxyl, DPPH) scavenging activity ($FSC_{50}$) was (+)-${\alpha}$-tocopherol > 80% MeOH extract > aglycone fraction > ethyl acetate fraction. These results indicate that peanut sprout root extracts can function as an antioxidant in biological systems, particularly skin exposed to solar UV radiation by scavenging $^1O_2$ and other ROS, and to protect cellular membranes against ROS.

The Evaluation of UV-induced Mutation of the Microalgae, Chlorella vulgaris in Mass Production Systems (자외선에 의해 유도된 Chlorella vulgaris 돌연변이 균주의 대량 생산 시스템에서의 평가)

  • Choi, Tae-O;Kim, Kyong-Ho;Kim, Gun-Do;Choi, Tae-Jin;Jeon, Young Jae
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1137-1144
    • /
    • 2017
  • The microalgae Chlorella vulgaris has been considered an important alternative resource for biodiesel production. However, its industrial-scale production has been constrained by the low productivity of the biomass and lipid. To overcome this problem, we isolated and characterized a potentially economical oleaginous strain of C. vulgaris via the random mutagenesis technique using UV irradiation. Two types of mass production systems were compared for their yield of biomass and lipid content. Among the several putatively oleaginous strains that were isolated, the particular mutant strain designated as UBM1-10 in the laboratory showed an approximately 1.5-fold higher cell yield and lipid content than those from the wild type. Based on these results, UBM1-10 was selected and cultivated under outdoor conditions using two different types of reactors, a tubular-type photobioreactor (TBPR) and an open pond-type reactor (OPR). The results indicated that the mutant strain cultivated in the TBPR showed more than 5 times higher cell concentrations ($2.6g\;l^{-1}$) as compared to that from the strain cultured in the OPR ($0.5g\;l^{-1}$). After the mass cultivation, the cells of UBM1-10 and the parental strain were further investigated for crude lipid content and composition. The results indicate a 3-fold higher crude lipid content from UBM1-10 (0.3%, w/w) as compared to that from the parent strain (0.1% w/w). Therefore, this study demonstrated that the economic potential of C. vulgaris as a biodiesel production resource can be increased with the use of a photoreactor type as well as the strategic mutant isolation technique.

Antioxidative Activity, Component Analysis, and Anti-elastase Effect of Aspalathus linearis Extract (루이보스 추출물의 항산화 활성, 성분 분석 및 엘라스테이즈 저해 효과)

  • Park, Soo-Nam;Yang, Hee-Jung;Won, Bo-Ryoung;Lim, Young-Jin;Yoon, Sun-Kyeong;Ji, Dong-Hwan;Choi, Jee-Yeon;Han, Seung-Joo;Lee, Chung-Woo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.4
    • /
    • pp.251-262
    • /
    • 2007
  • In this study, the antioxidative effects, inhibitory effects on elastase, and components of Aspalathus linearis extracts were investigated. The free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activities ($FSC_{50}$) of extract/fractions of Aspalathus linearis were in the order: 50 % ethanol extract ($11.50\;{\mu}g/mL$) < deglycosylated flavonoid aglycone fraction ($8.47\;{\mu}g/mL$) < ethylacetate fraction ($4.76\;{\mu}g/mL$). Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of some Aspalathus linearis extracts on ROS generated in $Fe^{3+}-EDTA/H_2O_2$ system were investigated using the luminol-dependent chemiluminescence assay. The order of ROS scavenging activities were ethylacetate fraction ($OSC_{50},\;4.58\;{\mu}g/mL$) < deglycosylated flavonoid aglycone fraction ($2.20\;{\mu}g/mL$) < 50 % ethanol extract ($1.09\;{\mu}g/mL$). 50 % Ethanol extract showed the most prominent scavenging activity. The protective effects of extract/fractions of Aspalathus linearis on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. The Aspalathus linearis extracts suppressed photohemolysis in a concentration dependent manner, particularly 50 % ethanol extract exhibited the most prominent celluar protective effect (${\tau}_{50}$, 272.00 min at $50\;{\mu}g/mL$). Aglycone fractions obtained from the deglycosylation reaction of ethylacetate fraction among the Aspalathus linearis extracts, showed 3 bands in TLC and 3 peaks in HPLC experiments (360 nm). Three components were identified as luteolin (composition ratio, 18.24 %), quercetin (58.79), and kaempferol (22.97). TLC chromatogram of ethylacetate fraction of Aspalathus linearis extract revealed 7 bands and HPLC chromatogram showed 9 peaks, which were identified as isoorientin (composition ratio, 14.71 %), orientin (28.84 %), vitexin (5.63 %), rutin and isovitexin (12.73 %), hyperoside (9.24 %), isoquercitrin (5.40 %), luteolin (1.48 %), quercetin (17.61 %) and kaempferol (4.59 %) in the order of elution time. The inhibitory effect of aglycone fraction on elastase ($IC_{50},\;9.08\;{\mu}g/mL$) was very high. These results indicate that extract/fractions of Aspalathus linearis can function as antioxidants in biological systems, particularly skin exposed to UV radiation by scavenging $^1O_2$ and other ROS, and protect cellular membranes against ROS. And component analysis of Aspalathus linearis extract and inhibitory activity on elastase of the aglycone fraction could be applicable to new functional cosmetics for smoothing wrinkles.

Gas Permeation Properties of $CO_2$ Through Poly(ethylene Glycol) Diacrylate/Poly(Propylene Glycol) Diacrylate Membrane (Poly(ethylene glycol)diacrylate/poly(propylene glycol)diacrylate 막의 이산화탄소 기체 투과특성에 관한 연구)

  • Rhim Ji Won;Nam Sang Yong;Lee Sun Yong;Yun Tae Il
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.250-257
    • /
    • 2004
  • PEG(poly(ethylene glycol)) acrylate/PPG(poly(propylene glycol)) acrylate (PEG/PPG) was prepared using UV induced photopolymerization method to investigate gas permeation properties of the membrane. The effect of PPG content on the solubility, diffusivity, and permeability of $CO_2$, $O_2$, and $N_2$ in PEG/PPG membrane is reported at $25^{\circ}C$ and $35^{\circ}C$. PEG/PPG (9:1) membrane exhibits $CO_2$ permeability coefficient of 28.9 barrer and $CO_2$/$N_2$ pure gas selectivity of 57.9 at $25^{\circ}C$. Permeability coefficient of increased with increasing with PPG content in the membrane. PEG/PPG (5:5) membrane shows $CO_2$ permeability coefficient of 78.9 barrer and $CO_2$/$N_2$ pure gas selectivity of 33.2 at $25^{\circ}C$.