• Title/Summary/Keyword: UV-Laser

Search Result 424, Processing Time 0.026 seconds

A STUDY OF THE MECHANISM OF IMPROVING ACID RESISTANCE OF BOVINE TOOTH ENAMEL AFTER PULSED Nd-YAG LASER IRRADIATION (펄스형 Nd-YAG 레이저 조사에 의한 법랑질 내산성 증가 기전에 관한 연구)

  • Lee, Young-Soon;Shon, Heung-Kyu
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.3
    • /
    • pp.640-658
    • /
    • 1996
  • The purpose of this study was to examine the mechanism of improving acid resistance of Nd-YAG laser irradiated tooth enamel and determine the most effective energy density for improving acid resistance. The bovine tooth enamel were lased with a pulsed Nd-YAG laser. The energy densities of exposed laser beam were varied from 10 to $70\;J/cm^2$. To investigate the degree of improving acid resistance by irradiation, all the samples were submerged to demineralize in 0.5 N $HClO_4$ solution for 1 minute. After 1 minute, 0.05 % $LaCl_3$ was added to the solution for interrupting the demineralization reaction. The amounts of dissolved calcium and phosphate in the solution were measured by using an atomic absorption spectrophotometer and the UV/VIS spectrophotometer, respectively. To examine the mechanism of improving acid resistance, X-ray diffraction analysis, infrared spectroscopy, and scanning electron microscopy were taken. The X-ray diffraction pattern of the samples were obtained in the $10^{\circ}{\sim}80^{\circ}2{\theta}$ range with $Cu-K{\alpha}$ radiation using M18HF(Mac Science Co.) with X-ray diffractometer operating at 40 KV and 300 mA. The infra-red spectra of the ground samples in 300 mg KBr pellets 10 mm diameter were obtained in the $4000cm^{-1}\;to\;400cm^{-1}$ range using JASCO 300E spectrophotometer. The scanning electron microscopy was carried out using JSM6400(JEOL Co.) with $500{\sim}2000$ times magnification. The results were as follow 1. The concentration of calcium dissolved from laser irradiated enamel with $50J/cm^2$ was significantly lesser than that of unlased control group (p<0.05) 2. From the result of the X-ray diffraction analysis, $\beta$-TCP, which increases acid solubility, was identified in lased enamel but the diffraction peaks of (002) and (004) became sharp with increasing energy density of laser irradiation. This means that the crystals in lased samples were grown through the c-axis and subsequently, the acid solubility of enamel decreased. 3. The a-axis parameter was slightly increased by laser irradiation, whereas the c-axis parameter was almost constant except for a little decrease at $50J/cm^2$. 4. In the infra-red spectra of lased enamels, phosphate bands ($600{\sim}500cm^{-1}$), B-carbonate bands (870, $1415{\sim}1455cm^{-1}$), and A-carbonate band ($1545cm^{-1}$) were observed. The amounts of phosphate bands and the B-carbonate bands were reduced, on the other hand, the amount of the A-carbonate band was increased by increase the energy density. 5. The SEM experiments reveal that the surface melting and recrystallization were appeared at $30J/cm^2$ and the cracks were observed at $70J/cm^2$. From above results, It may be suggested that the most effective energy density for improving acid resistance of tooth enamel with the irradiation of Nd-YAG laser was $50J/cm^2$. The mechanism of improving acid resistance were reduction of permeability due to surface melting and recrystallization of lased enamel and reduction of acid solubility of enamel due to decrease of carbonate content and growth of crystal.

  • PDF

A Study on the Real-Time Oil-Spill Monitoring Technology (실시간 기름유출 모니터링 기술에 관한 연구)

  • Yeom, Woo-jung;Hong, Yeon-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.472-477
    • /
    • 2017
  • Oil spills cause a lot of damage to the environment. Oil destroys the water environment and ecosystem in a very short period of time once they are contaminated by it, it takes a lot of time to recover from the contamination and the cleaning process is very difficult. Therefore, oil detectors are greatly needed as they can monitor any oil spills over the sea, rivers, and lakes. There are two kinds of technology available for detecting oil, viz. the contact and non-contact types. The former is based on the use of the conductivity, capacitance and microwaves, while the latter employs infrared, UV, laser, optic and radar technologies. As there are also various hurdles in the measuring of oil on water, such as the presence of waves, refraction of light, temperature and saltiness, it is imperative to select the right oil detector which is appropriate for the specific environment. In this study, a contact type oil detector is developed, which can be used in oil related industries, such as refineries, petrochemical companies, and power generation stations. The detector is made up of the sensor module, which floats on the water, and the controller which processes the signal coming from the sensor module and displays it. It is designed in such a way that the existence of oil is detected through the sensor and the change in the permittivity is observed to determine the volume and type of spilled oil.

An evaluation on crystallization speed of N doped $Ge_2Sb_2Te_5$ thin films by nano-pulse illumination (나노-펄스 노출에 따른 질소 첨가한 $Ge_2Sb_2Te_5$ 박막의 결정화 속도 평가)

  • Song, Ki-Ho;Beak, Seung-Cheol;Park, Heung-Su;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.134-134
    • /
    • 2009
  • In this work, we report that crystallization speed as well as the electrical and optical properties about the N-doped $Ge_2Sb_2Te_5$ thin films. The 200-nm-thick N-doped $Ge_2Sb_2Te_5$ thin film was deposited on p-type (100) Si and glass substrate by RF reactive sputtering at room temperature. The amorphous-to-crystalline phase transformation of N-doped $Ge_2Sb_2Te_5$ thin films investigated by X-ray diffraction (XRD). Changes in the optical transmittance of as-deposited and annealed films were measured using a UV-VIS-IR spectrophotometer and four-point probe was used to measure the sheet resistance of N-doped $Ge_2Sb_2Te_5$ thin films annealed at different temperature. In addition, the surface morphology and roughness of the films were observed by Atomic Force Microscope (AFM). The crystalline speed of amorphous N-doped $Ge_2Sb_2Te_5$ films were measured by using nano-pulse scanner with 658 nm laser diode (power : 1~17 mW, pulse duration: 10~460 ns). It was found that the crystalline speed of thin films are decreased by adding N and the crystalline temperature is higher. This means that N-dopant in $Ge_2Sb_2Te_5$ thin film plays a role to suppress amorphous-to-crystalline phase transformation.

  • PDF

Investigation of Coke Formation on H-ZSM-5 Catalyst During Aromatization of C5 Paraffin and Olefin Using Optical and Fluorescence Microscopy

  • Chung, Young-Min
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.327-332
    • /
    • 2013
  • Space- and time-resolved in-situ optical and fluorescence microspectroscopy techniques have been applied to investigate the coke formation during aromatization of C5 paraffin and olefin over H-ZSM-5 crystal. In-situ UV/vis absorption measurement offers space- and time-resolved information for the coke formation. Different coking trends have been observed with respect to the location of a crystal as well as the reactant types. From in-situ confocal fluorescence microspectroscopy study, it is revealed that the concentration of certain species photo-excited at 488 nm becomes high at the central region, whereas the compounds emitting fluorescence by 561 nm laser move towards the boundary region of the crystal. The different fluorescence patterns obtained varying excitation lasers suggest the existence of distinct fluorescence emitting species having different degree of coke growth.

Photodissociation Dynamics of Allyl Alcohol in UV: The Exit Channel Barrier for OH Production

  • Lee, Ji-Hye;Kang, Tae-Yeon;Kwon, Chan-Ho;Hwang, Hyon-Seok;Kim, Hong-Lae
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.510-514
    • /
    • 2011
  • Photodissociation dynamics of allyl alcohol ($H_2C$=CH-$CH_2OH$) has been investigated at 205 - 213 nm along the UV absorption band by measuring rotationally-resolved laser-induced fluorescence spectra of OH radicals. Observed energy partitioning of the available energy among products at all photon energies investigated was similar and the barrier energy for OH production is about 574.7 kJ/mol from the OH yield measurements. The potential energy surfaces for the $S_0$, $T_1$, and $S_1$ excited states along the dissociation coordinate were obtained by ab initio quantum chemical calculations. The observed energy partitioning was successfully modeled by the "barrier-impulsive model" with the reverse barrier and the geometry obtained by the calculated potential energy surfaces. The dissociation takes place on the $T_1$ excited state potential energy surface with an energy barrier in the exit channel and a large portion of the photon energy is distributed in the internal degrees of freedom of the polyatomic products.

Transmission Characteristics of Multiply Cascaded Phase-shifted Long-period Fiber Gratings and their Dependence on Initial Coupling Strength (직렬 연결 위상 천이 장주기 격자의 특성과 초기 커플링 세기 효과에 관한 연구)

  • Kim, Min-Sung;Han, Young-Geun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.18-22
    • /
    • 2006
  • The transmission characteristics of multiply cascaded phase-shifted long-period fiber gratings(LPFGs) were investigated theo-retically and experimentally. Their passband can be changed by increasing the number of p-shifted LPFGs. When two p-shifted LPFGs with different grating lengths are cascaded in series, the bandwidth of the rejection band and passband can be controlled by the pristine characteristics of two gratings. We also investigate the transmission characteristics of phase-shifted LPFG by exposing the half of LPFG region to UV laser. The transmission characteristics strongly depend on the initial coupling strength of the LPFG.

Fabrication of Laminated Multi-layer Flexible Substrate with Cu/Sn Via (Cu/Sn 비아를 적용한 일괄적층 방법에 의한 다층연성기판의 제조)

  • Lee H. J.;Yu Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.1-5
    • /
    • 2004
  • A multi-layer flexible substrate is composed of copper(Cu)/polyimide that are known as good electrical conductivity, and low dielectric constant, respectively. In this study. conductor line of $5{\mu}m$-pitch was successfully fabricated without non-uniform pattern shape by electroplating copper and coating polyimide on patterned stainless steel. For multi-layer flexible substrate, via holes were drilled by UV laser and filled with electroplating copper and tin. And then, the PI layer with vias and conductor lines was stripped from stainless steel substrate. The PI layers were laminated at once with careful alignment between layers. Solid state reaction between tin and copper during lamination formed the intermetallic compounds of $Cu_6Sn_5$($\eta$-phase) and $Cu_3Sn$($\epsilon$-Phase) and achieved a complete inter-connection by vertically positioning the plugged via holes on via pad. The via formation process has several advantages; such as better electrical property and lower cost than V type via and paste via.

  • PDF

A Study on the Band Characteristics of ZnSe Thin Film with Zinc-blende Structure (Zinc Blende 구조를 가지는 ZnSe 결정의 밴드 특성에 관한 연구)

  • Park, Jeong-Min;Kim, Hwan-Dong;Yoon, Do-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.145-151
    • /
    • 2011
  • ZnSe, as a II-VI compound semiconductor which has a wide band gap in the visible region is applicable to the various fields such as laser diode, display and solar cell. By using the electrochemical deposition method, ZnSe thin film was synthesized on the ITO glass substrate. The synthesis of ZnSe grains and their structure having zinc blende shape were verified through the analysis of XRD and SEM. UV spectrophotometric method determined the band gap as the value of 2.76 eV. Applying the DFT (Density Functional Theory) in the molecular dynamics, the band structure of ZnSe grains was analyzed. For ZnSe grains with zinc blende structure, the band structure and its density of state were simulated using LDA (Local Density Approximation), PBE (Perdew Burke Ernzerhof), and B3LYP (Becke, 3-parameter, Lee-Yang-Parr) functionals. Among the calculations of energy band gap upon each functional, the simulated one of 2.65 eV based on the B3LYP functional was mostly near by the experimental measurement.

Laboratory-scale fluorescence spectroscopic method using UV for monitoring soils contaminated with petroleum produce (자외선 형광 분석법을 이용한 유류 토양오염 모니터링 시스템의 현장 적용을 위한 기초 연구)

  • 김우진;박재우;이주인
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.48-58
    • /
    • 2002
  • As a pilot experiment for developing the monitoring system for oil spill from storage tank, previous approach of monitoring contaminated oil from mixed soil sample had the limitation that it cannot reflect the real situations of the contamination. In this study, more realistic contamination condition and water contents were considered. Fluorescence intensity was not affected by water contents. To acquire the stability of media, sand, Ca-bentonite, alumina, Fe-oxide, bead and silica were tested. Only sand was suitable to our system. These results should provide basic information for constructing reliable monitoring system.

Particle Shapes and Optical Property of Synthesized ZnO with Amine Additives (아민첨가제를 사용하여 합성된 ZnO의 입자형상 및 광학적 특성)

  • Hyeon, Hye-Hyeon;Hyun, Mi-Ho;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • Zinc oxide of hexagonal wurzite, is known as n-type semiconductor. It has a wide band gap energy of 3.37 eV and large exciton binding energy of 60 meV. It can be widely applied to gas sensors, laser diodes, dye-sensitized solar cells and degradation of dye waste. The use of microwave hydrothermal synthesis brings a rapid reaction rate, high yield, and energy saving. Amine additives control the different particle shapes because of the chelate effect and formation of hydroxide ion. In this study, zinc nitrate hexahydrate was used as zinc precursor. In addition, ethanolamine, ethylenediamine, diethylenetriamine, and hexamethylenetetramine are used as shape control agent. The pH value was controlled as 11 by NaOH. The shapes of zinc oxide are star-like, rod, flower-like, and circular cone. In order to analyze physical, chemical, and optical properties of ZnO with diverse amine additives, we used XRD, SEM, EDS, FT-IR, UV-Vis spectroscopy, and PL spectroscopy.