• Title/Summary/Keyword: UV-B irradiation

Search Result 245, Processing Time 0.032 seconds

Accumulation of Flavonols in Response to Ultraviolet-B Irradiation in Soybean Is Related to Induction of Flavanone 3-β-Hydroxylase and Flavonol Synthase

  • Kim, Bong Gyu;Kim, Jeong Ho;Kim, Jiyoung;Lee, Choonghwan;Ahn, Joong-Hoon
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.247-252
    • /
    • 2008
  • There are several branch points in the flavonoid synthesis pathway starting from chalcone. Among them, the hydroxylation of flavanone is a key step leading to flavonol and anthocyanin. The flavanone 3-${\beta}$-hydroxylase (GmF3H) gene was cloned from soybean (Glycine max cultivar Sinpaldal) and shown to convert eriodictyol and naringenin into taxifolin and dihydrokaempferol, respectively. The major flavonoids in this soybean cultivar were found by LC-MS/MS to be kamepferol O-triglycosides and O-diglycosides. Expression of GmF3H and flavonol synthase (GmFLS) was induced by ultraviolet-B (UV-B) irradiation and their expression stimulated accumulation of kaempferol glycones. Thus, GmF3H and GmFLS appear to be key enzymes in the biosynthesis of the UV-protectant, kaempferol.

Enhanced biosynthesis of artemisinin by environmental stresses in Artemisia annua (환경스트레스 처리에 의한 개똥쑥 artemisinin 생합성 증진)

  • Kyung Woon Kim;Cheol Ho Hwang
    • Journal of Plant Biotechnology
    • /
    • v.49 no.4
    • /
    • pp.307-315
    • /
    • 2022
  • Artemisinin is a secondary metabolite of Artemisia annua that shows potent anti-malarial, anti-bacterial, antiviral, and anti-tumor effects. The supply of artemisinin depends on its content in Artemisia annua, in which various environmental factors can affect the plant's biosynthetic yield. In this study, the effects of different light-emitting diode (LED)-irradiation conditions were tested to optimize the germination and growth of Artemisia annua for the enhanced production of artemisinin. Specifically, the ratio between the red and blue lights in the irradiating LED was varied for investigation as follows: [Red : Blue] = [6 : 4], [7 : 3], and [8 : 2]. Furthermore, additional stress factors like UV-B-irradiation (1,395 ㎼/cm2), low temperature (4℃), and dehydration were also explored to induce hormetic expressions of ADS, CYP, and ALDH1, which are essential genes for the biosynthesis of artemisinin. Quantitative polymerase chain reaction (qPCR) was used to analyze the expression levels of the respective genes and their correlation with the specified conditions. [8 : 2] LED-irradiation was the most optimal among the tested conditions for the cultivation of Artemisia annua in terms of both fresh and dry weights post-harvest. For the production of artemisinin, however, [7 : 3] LED-irradiation with dehydration for six hours pre-harvest was the most optimal condition by inducing around twofold enhancement in the biosynthetic yield of artemisinin. As expected, a correlation was observed between the expression levels of the genes and the contents of artemisinin accumulated.

The Signaling of UV-induced Apoptosis in Melanocytes

  • Kim, Dong-Seok;Kim, Sook--Young;Park, Kyoung-Chan
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.217-220
    • /
    • 2002
  • Ultraviolet B (UVB) radiation may activate or deteriorate cultured human epidermal melanocytes, depending on the doses and culture conditions. In this study, we examined whether apoptosis of melanocytes can be induced by physiologic doses of UVB irradiation. PI staining for DNA condensation and flow cytometric analyses demonstrated the apoptotic cell death of melanocytes after UVB irradiation. The level of p53 and Bax revealed a dose-dependent increase with increasing dose of UVB, but the level of Bcl-2 remained unchanged. Confocal microscopic examination showed that Bax moved trom a diffuse to a punctate distribution after UVB irradiation. However, there were no changes in the pattern of Bcl-2. We next examined the downstream targets of apoptosis. Our results showed that a precursor form of caspase-3 disappeared with increasing doses of UVB. We also observed cleavage of poly(ADP-ribose) polymerase (PARP) after UVB irradiation. In addition, UVB irradiation resulted in a remarkable activation of c-Jun N-terminal kinase (JNK). These results indicate that UVB may induce apoptosis via JNK activation in human melanocytes.

  • PDF

Characterization of Arthrospira platensis Mutants Generated by UV-B Irradiation (자외선 조사에 의해 유도된 미세조류 Arthrospira platensis 변이주의 특성)

  • Park, Hyun-Jin;Kim, Young-Hwa;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.496-500
    • /
    • 2012
  • Arthrospira platensis (A. platensis) is an economically important filamentous microalgae. The isolation of mutants by chemical or physical mutagen is a clue for the strain improvement. In this study, effects of ultraviolet-B (UV-B) radiation on A. platensis were investigated. Cells (or microalgae) were exposed to UV-B (15 Watt, 254 nm) for 1, 3, 5, and 10 min, and resulting mutants were designated UM1, UM3, UM5, and UM10, respectively. Especially, the lipid content of UM5 mutant was considerably increased by 8~11 fold compared to that of wild types. Moreover, the carotenoid content and antioxidant enzyme (peroxidase and superoxide dismutase) activity were increased. It was shown that UV-induced mutants can accumulate bioactive compounds, which will be useful for the industrial production of valuable products.

Synthesis of Macroporous TiO2 Microparticles for Anti-Bactericidal Application (거대 기공을 갖는 다공질 TiO2 분말의 살균 효과)

  • Roh, Seong Hoon;Kim, Jeong Keun;Cho, Young-Sang
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.524-535
    • /
    • 2018
  • In this study, macroporous titania powders were synthesized utilizing the emulsion-assisted self-assembly to apply the removal of B. subtilis under UV irradiation, and the results were compared with the bactericidal effect of commercial titania nanoparticles. By changing the pore size of the porous titania powder, the reduction of B. subtilis by photocatalytic effect was measured, and the bactericidal capacity of the porous particles according to the pore size was compared in order to derive the optimum condition of the sterilization experiment. It was observed that the sterilization effect increased as the pore size became smaller, and it was confirmed that more than 50% of B. subtilis cold be removed for 1 hour of UV irradiation. Also, in order to promote the generation of active chemical species, a diluted solution of hydrogen peroxide was combined with the photocatalytic sterilization method, resulting in the removal of most of the strain after ultraviolet irradiation for 1 hour.

Anti-Pigmentation Effects of Eight Phellinus linteus-Fermented Traditional Crude Herbal Extracts on Brown Guinea Pigs of Ultraviolet B-Induced Hyperpigmentation

  • Ahn, Hee-Young;Choo, Young-Moo;Cho, Young-Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.375-380
    • /
    • 2018
  • We have previously found that mycelia culture broth of eight kinds of traditional herbal extracts fermented with Phellinus linteus (previously named as 8-HsPLCB) not only inhibited melanin and tyrosinase activity, but also reduced the contents of melanogenesis-related proteins, including tyrosinase and microphthalmia-associated transcription factor, in 3-isobutyl-1-methylxanthine-stimulated B16F0 melanoma cells. For a further study, the effect of 8-HsPLCB against skin pigmentation in brown guinea pigs with ultraviolet B (UVB)-induced hyperpigmentation was investigated. 8-HsPLCB (3%) and arbutin (2%) as positive controls were applied topically twice daily for 4 weeks to the hyperpigmented areas. 8-HsPLCB showed skin-lightening effect as effective as arbutin, one of the most widely used in whitening cosmetics. Melanin index values as the degree of pigmentation showed a significant reduction week by week post 8-HsPLCB treatment and then substantially reduced by 4 weeks. The degree of depigmentation after 4 weeks of topical application with 8-HsPLCB was 32.2% as compared with before treatment (0 week). Moreover, using Fontana-Masson staining and hematoxylin-eosin staining, 8-HsPLCB reduced melanin pigmentation in the basal layer of the epidermis and epidermal thickness changes exposed to the UV-B irradiation as compared with non-treatment and vehicle treatment. The intensity of the skin-lightening effect of 8-HsPLCB was similar to arbutin. These results suggest that the skin-lightening effect of 8-HsPLCB might be resulted from inhibition of melanin synthesis by tyrosinase in melanocytes. To conclude, 8-HsPLCB treatment showed reduction of the melanin pigment and histological changes induced by UV irradiation in brown guinea pigs.

Effect of γ-ray Irradiation on THMs Formation and Water Quality Characteristics in the Chlorination of Humic Acid Contaming Water (감마선 조사가 휴민산 염소화에 의한 THMs 생성능 및 수질특성에 미치는 영향)

  • Kang, Chul-ho;Lim, Hyun-woo;Jung, Sung-woon;Choi, Jong-hyuk;Kim, Jong-hoon;Choi, Yong-wook;Lee, Myun-joo
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.1034-1039
    • /
    • 2010
  • Variation of formation potential of THM (THMFP) by chlorination of humic acid and characteristics of water quality with ${\gamma}$-ray irradiation were investigated, which were divided into two categories by the order of ${\gamma}$-ray irradiation and chlorination in water treatment process. The group A consisted of the ${\gamma}$-ray irradiation followed by chlorination process of humic acid, and the group B consisted of the chlorination followed by ${\gamma}$-ray irradiation process. The pH, ORP, $UV_{254}$, and DOC decreased rapidly with an increase in ${\gamma}$-ray irradiation of 3 kGy. while conductivity was little changed. Maximum degradation ratio of chloroform in THMs of group A was 82%, while that in group B was 69%. No brominated THMs were detected at high irradiation (>3 kGy). We found that group A water treatment process was more effective in lowering the THMFP than that of group B.

The Anti-aging Effects of Various Berries in the Human Skin Keratinocyte (HaCaT) Cells (피부각질형성세포에서 다양한 베리류의 피부노화개선 효과 비교)

  • Lee, Su Jung;Choi, Hye Ran;Lee, Jin-Cheol;Park, Hee Jeon;Lee, Hee Kwon;Jeong, Jong Tae;Lee, Tae-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.198-204
    • /
    • 2014
  • Ultraviolet B (UV-B) irradiation is a negative factor that induces skin damage, inflammation, and aging. UVB irradiation induces the inflammatory response through interleukin (IL)-6 and IL-8 expression in keratinocytes. In addition, it induces the production of reactive oxygen species (ROS) and the activation of matrix metalloproteinase-1 (MMP-1), which plays an important role in collagen 1 degradation in the extracellular matrix. We investigated the antiaging effects of five kinds of berry in human skin keratinocyte (HaCaT) cells using juice of black raspberry (Rubus occidentalis), blueberry wild (Vacciniun angustifolium) and cultivar (Vacciniun corymbosum), black chokeberry (Aronia melanocarpa (Michx.) Elliott), and mulberry (Morus abla). HaCaT cells irradiated with UV-B exhibited increased ROS generation, as well as IL-6, IL-8, and MMP-1 gene expression, when compared to the control cells that were not irradiated with UV-B. However, pre-treatment of berry juice before UV-B irradiation significantly down-regulated the UV-B-induced ROS generation and inflammatory cytokine and MMP-1 expression. The results suggest that all berries have anti-aging effects including lowering inflammatory cytokine levels, ROS generation, and MMP-1 expression in HaCaT cells during UV-B irradiation.

The effect of Bu-Zhong-Yi-Qi-Tang on ultraviolet B-induced skin damages in mouse (자외선 B 조사 마우스에서 피부손상에 대한 보중익기탕의 효과)

  • Kim, Joong-Sun;Lee, Hae-June;Song, Myoung-Sub;Seo, Heung-Sik;Moon, Changjong;Kim, Jong-Choon;Bae, Chun-Sik;Jo, Sung-Kee;Kim, Sung-Ho
    • Korean Journal of Veterinary Research
    • /
    • v.49 no.1
    • /
    • pp.17-22
    • /
    • 2009
  • The effect of Bu-Zhong-Yi-Qi-Tang (BZYQT) on the changes of ultraviolet (UV) light B radiation-induced apoptotic sunburn cell (SBC) and epidermal ATPase-positive dendritic cell (DC) in SKH1- hr or ICR mouse were investigated. The mice were treated with UVB (200 mJ/$cm^2$) and were sacrificed 24 h later. BZYQT (50 mg/kg of body weight) or vehicle (saline) was given i.p. at 36 and 12 h before irradiation, and 30 min after irradiation or BZYQT cream (0.2%) or cream base (vehicle) was topically treated at 24 h and 15 min before irradiation, and immediately after irradiation. The skin of SKH1-hr mouse prepared from the back of untreated mice exhibited about 0.3 SBC/cm length of epidermis, and 24 h after UV irradiation, the applied areas show an increased number of SBCs. But the frequency of UVB-induced SBC formation was reduced by intraperitoneal injection of BZYQT extract (p < 0.01). The numbers of DC in normal ICR mouse were 628.00 ${\pm}$ 51.56 or 663.20 ${\pm}$ 62.58 per $mm^2$ of ear epidermis. By 1 day after UVB treatment, the number of ATPase-positive cells/$mm^2$ were decreased by 39.0% or 27.1% in i.p. or topical application group with vehicle. Treatment of BZYQT was associated with increase of 33.9% in i.p. group (p < 0.05) or 2.7% in topical application group in the number of ATPase positive cells compared with the irradiation control group. The results presented herein that BZYQT administration could reduce the extent of skin damages produced by UVB.

The Effect of Red Ginseng on Ultraviolet B-induced Skin Damages in Mouse (자외선 B 조사 마우스에서 피부손상에 대한 홍삼의 효과)

  • Lee, Hae-June;Kim, Se-Ra;Kim, Joong-Sun;Moon, Chang-Jong;Kim, Jong-Choon;Bae, Chun-Sik;Jang, Jong-Sik;Jo, Sung-Kee;Kim, Sung-Ho
    • Journal of Ginseng Research
    • /
    • v.30 no.4
    • /
    • pp.194-198
    • /
    • 2006
  • The effects of red ginseng (RG) on the changes of ultraviolet (UV) light B radiation-induced apoptotic sun-burn cell (SBC) and epidermal ATPase-positive dendritic cell (DC) in SKH 1-hr or ICR mouse were investigated. The mice were treated with UVB ($200mJ/cm^2$) and were sacrificed 24 hours later. RG (50 mg/kg of body weight) or vehicle (saline) was given i.p. at 36 and 12 hours before irradiation, and 30 minutes after irradiation. RG cream (0.2%) or cream base (vehicle) was also topically treated at 24 hours and 15 minutes before irradiation, and immediately after irradiation. The skin of SKH 1-hr mouse prepared from the back of untreated mice exhibited about 0.3 SBC/cm length of epidermis, and 24 hours after UV irradiation, the applied areas show an increased number of SBCs. But the frequency of UVB-induced SBC formation was significantly reduced by intraperitoneal injection of RG extract. The numbers of DC in normal ICR mouse were $628.00{\pm}51.56\;or\;663.20{\pm}62.58\;per\;mm^2$ of ear epidermis. By 1 day after UVB treatment, the number of ATPase-positive $cells/mm^2$ were decreased by 39.0% or 27.1% in i.p. or topical application group with vehicle. The frequency of UVB ($200mJ/cm^2$)-induced DC decrease was reduced by treatment of RG as 31.3% in i.p. group and 22.4% in topical application group compared with the irradiation control group. The results presented herein that RG administration could reduce the extent of skill damages produced by UVB.