• Title/Summary/Keyword: UV pulsed laser

검색결과 72건 처리시간 0.023초

펄스 레이저 증착법으로 제작한 ZnO 박막의 발광 특성 (Light emission properties of ZnO thin films grown by pulsed laser deposition)

  • 배상혁;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.539-542
    • /
    • 2000
  • ZnO thin films for light emission device have been deposited on sapphire and silicon substrates by pulsed laser deposition technique(PLD). A Nd:YAG laser was used with the wavelength of 355 nm. In order to investigate the emission properties of ZnO thin films, PL measurements with an Ar ion laser as a light source using an excitation wavelength of 351 nm and a power of 100 mW are used. All spectra were taken at room temperature by using a grating spectrometer and a photomultiplier detector. ZnO exhibited PL bands centered around 390, 510 and 640 nm, labeled near ultra-violet (UV), green and orange bands. Structural properties of ZnO thin films are analized with X-ray diffraction (XRD).

  • PDF

분위기 산소압 변화에 따른 ZnO 박막의 발광특성 변화 (Ultraviolet and green emission property of ZnO thin film grown at various ambient pressure)

  • 강정석;심은섭;강홍성;김종훈;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.355-357
    • /
    • 2001
  • ZnO thin films were deposited on (001) sapphire substrate at various ambient gas pressure by pulsed laser deposition(PLD). Oxygen was used as ambient gas, and oxygen gas pressure was varied from 1.0${\times}$10$\^$-6/ Torr to 500 mTorr during the film deposition. As oxygen gas pressure increase in the region below critical pressure photoluminescence(PL) intensity in UV and green region increase. As oxygen gas pressure increase in the region above critical pressure photoluminescence(PL) intensity in UV and green region decrease. Each of critical ambient gas Pressures was 350 mTorr for UV emission and 200 mTorr for green emission.

  • PDF

산소 가스를 이용한 산화아연의 전자 농도와 광발광 세기 조절 (Control of electron concentration and photoluminescence intensity of ZnO thin films using oxygen gas)

  • 강홍성;김재원;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.185-187
    • /
    • 2004
  • The electron concentration of ZnO thin film fabricated by pulsed laser deposition was controlled by varying oxygen gas pressure. The electron concentration of ZnO was increased from $10^{17}\;to\;10^{19}/cm^3$ as oxygen gas pressure increased from 20 mTorr to 350 mTorr. Ultraviolet(UV) intensity of photoluminescence of ZnO was controlled, too. UV intensity of ZnO was increased as oxygen gas pressure increased from 20 mTorr to 350 mTorr. The relation between electron concentration and UV intensity was investigated.

  • PDF

변형률 속도 효과를 고려한 355 nm UV 레이저 구리재질의 싱글 펄스 전산해석 (Computational Analysis of 355 nm UV Laser Single-Pulsed Machining of Copper Material Considering the Strain Rate Effect)

  • 이정한;오재용;박상후;신보성
    • 한국기계가공학회지
    • /
    • 제9권3호
    • /
    • pp.56-61
    • /
    • 2010
  • Recently, UV pulse laser is widely used in micro machining of the research, development and industry field of IT, NT and BT products because the laser short wavelength provides not only micro drilling, micro cutting and micro grooving which has a very fine line width, but also high absorption coefficient which allows a lot of type of materials to be machined more easily. To analyze the dynamic deformation during a very short processing time, which is nearly about several tens nanoseconds, the commercial Finite Element Analysis (FEA) code, LS-DYNA 3D, was employed for the computitional simulation of the UV laser micro machining behavior for thin copper material in this paper. A finite element model considering high strain rate effect is especially suggested to investigate the micro phenomena which are only dominated by mechanically pressure impact in disregard of thermally heat transfer. From these computational results, some of dynamic deformation behaviors such as dent deformation shapes, strains and stresses distributions were observed and compared with previous experimental works. These will help us to understand micro interaction between UV laser beam and material.

Crystallization behavior of a-Si film using UV pulsed laser

  • Kim, Do-Young;Park, Kyung-Bae;Kwon, Jang-Yeon;Jung, Ji-Sim;Xianyu, Wenxu;Park, Young-soo;Noguchi, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.656-660
    • /
    • 2003
  • We studied the crystallization behavior of LP-CVD a-Si film using UV pulsed laser. With increase in the shot number of irradiation by fixing its energy density, poly-Si film having a large grain size of $0.5 {\mu}m$ was obtained. By analyzing the crystallized Si films using optical analysis such as Raman spectroscopy or AFM technique etc., conspicuous correlation between the grain size and the resultant film properties such as the stress or the roughness has been found. With the increase in the energy density or the shots number of laser, remarkable grain growth occurred following to the roughness formation corresponding to the increase in the tensile stress.

  • PDF

펄스레이저 증착법에서 기판-플룸 각 변화가 ZnO 박막의 구조 및 광학적 특성에 미치는 영향 (Structural and Optical Properties of ZnO Thin Films Grown at Various Plume-Substrate Angles by Pulsed Laser Deposition)

  • 강정석;강홍성;김재원;이상렬
    • 한국전기전자재료학회논문지
    • /
    • 제17권3호
    • /
    • pp.329-332
    • /
    • 2004
  • ZnO thin films were grown with different plume-substrate angles by pulsed laser deposition (PLD) to control the amount of ablated species arriving on a substrate per laser shot. The angles between plume propagation direction and substrate plane (P-S angle) were 0$^{\circ}$, 45$^{\circ}$ and 90$^{\circ}$. The growth time was changed in order to adjust film thickness. From the XRD pattern exhibiting a dominant (002) and a minor (101) XRD peak of ZnO, all films were found to be well oriented along c-axis. From the AFM image, it was found that the grain size of ZnO thin film was increased, as P-S angle decreased. UV intensity investigated by PL (Photoluminescence) increased as P-S angle decreased.

Structural, Electrical and Optical Properties of ZnO Thin Films Grown at Various Plume-Substrate Angles by Pulsed Laser Deposition

  • Kim Jae-Won;Kang Hong-Seong;Lee Sang-Yeol
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권3호
    • /
    • pp.97-101
    • /
    • 2005
  • ZnO thin films were grown at different plume-substrate (P-S) angles of 90$^{\circ}$ (on-axis PLD), 45$^{\circ}$ and 0$^{\circ}$ (off-axis PLD) using pulsed laser deposition. The x-ray diffraction pattern exhibiting a dominant (002) and a minor (101) peak of ZnO indicates all films were strongly c-axis oriented. By observing of (002) peak, the FWHMs of ZnO (002) peaks decreased and c-axis lattice constant approached the value of bulk ZnO as P-S angle decreased. Whereas the carrier concentration of ZnO thin film deposited at P-S angle of 90$^{\circ}$ was ~ 10$^{19}$ /cm$^{3}$, the Hall measurement of ZnO thin films deposited at P-S angles of 0$^{\circ}$ and 45$^{\circ}$ was impossible due to the decrease of the carrier concentration by the improvement of stoichiometry and crystalline quality. By decreasing P-S angle, the grain size of the films and the UV intensity investigated by photoluminescence (PL) increased and UV peak position showed red shift. The improvement of properties in ZnO thin films deposited by off-axis technique was due to the decrease of repulsive force between a substrate and the particle in plume and the relaxation of supersaturation.

355nm 펄스 레이저를 이용한 구리 표면의 소수성 개질에 관한 연구 (A Study on Fabrication of Hydrophobic Modification on the Surface of Copper using 355nm-Pulsed Laser)

  • 윤단희;강보석;박준한;곽청렬;신보성
    • 마이크로전자및패키징학회지
    • /
    • 제23권4호
    • /
    • pp.101-105
    • /
    • 2016
  • 최근 자연모방을 이용한 소수성 표면 가공이 많은 관심을 끌고 있다. 대표적인 가공 방법으로 기계적 가공, 포토리소그래피 가공, 레이저를 이용한 공정이 있다. 본 논문에서는 구리필름에 UV 펄스 레이저를 직접 조사해 마이크로 그루브를 형성하고 상온에서의 산화를 통해 표면의 거칠기를 증가시켜 소수성 표면을 제작하였다. 패턴 생성 뒤 일정 시간 산화를 시킨 후에 측정된 접촉각은 산화를 시키기 전보다 약 $30{\sim}70^{\circ}$까지 증가함을 보인다. 본 연구 결과를 통해서 화학적인 처리과정 없이 보다 안정한 소수성 표면을 제조할 수 있음을 확인하였다.

Characterization of SnO2 thin films grown by pulsed laser deposition under transverse magnetic field

  • Park, Jin Jae;Kim, Kuk Ki;Roy, Madhusudan;Song, Jae Kyu;Park, Seung Min
    • Rapid Communication in Photoscience
    • /
    • 제4권3호
    • /
    • pp.50-53
    • /
    • 2015
  • $SnO_2$ thin films were deposited on fused silica substrate by pulsed laser deposition under transverse magnetic field. We have explored the effects of magnetic field and ablation laser wavelength on the optical properties of laser-induced plasma plume and structural characteristics of the deposited $SnO_2$ films. Optical emission from the plume was monitored using an optical fiber to examine the influence of magnetic field on the population of the excited neutral and ionic species and their decay with times after laser ablation. Also, we employed photoluminescence, x-ray diffraction, and UV-Vis absorption to characterize $SnO_2$ films.