• Title/Summary/Keyword: UV curable resin

Search Result 68, Processing Time 0.025 seconds

Roll-to-roll process for large-area transfer of Ag nanowire electrode (은 나노 와이어 전극의 대면적 전사를 위한 롤 투 롤 공정)

  • Park, Yangkyu;Kim, Jae Pil;Kim, Wan Ho;Jung, Kang;Jeong, Ho-Jung
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.3
    • /
    • pp.173-179
    • /
    • 2022
  • This study presents a roll-to-roll process which is capable of Ag nanowire (AgNW) transfer from polyethylene terephthalate (PET) film to polycarbonate (PC) film. We developed a roll-to-roll machine that consists of two film suppliers, a coater of photo-curable resin, a film laminator, an ultraviolet (UV) exposure unit, and a film winder to facilitate large-area electrode transfer between different flexible substates. Using the process, optimal fabrication condition was investigated by parametric experiments in terms of the UV exposure time, number of thermal cycling, and exposure time of high temperature and humidity. A fabricated AgNW on PC film showed sheet resistance of 52 Ω/sq and optical transmittance of approximately 80 % over a range of visible light.

Solvent-free UV-curable Acrylic Adhesives for 3D printer build sheet (3D 프린터 빌드시트용 무용제 UV 경화형 아크릴 점착제의 제조)

  • Lee, Bae Hwa;Park, Dong Hyup;Kim, Byung Jick
    • Journal of Adhesion and Interface
    • /
    • v.21 no.3
    • /
    • pp.93-100
    • /
    • 2020
  • 3D printing technology enables proper objects to be made through an additive manufacturing method, but resulting in dimension deviation of the product due to contraction phenomenon as cooling melted filament resin injected from high-temperature use environment. In this research, we studied on acrylic adhesives for 3D printer build sheet in order to fabricate high-quality products with a precise shape and to well-mount without distortion. The solvent-free UV-curable acrylic adhesive formulation was designed by adding 4-acryloylmorpholine (ACMO) with high adhesion, toughness, glass transition temperature so that adhesion properties are stable at high temperature and products are easily mounted/detached from the adhesives. The designed formulation was polymerized through two-steps using post-addition of monomers. Using this, the acrylic adhesive was coated to make a film and then analyzed using various experimental techniques. As a result, the fabricated adhesive exhibited high glass transition temperature and there was little gap in peel strength before and after thermal treatment. Moreover, it was confirmed by rheological analysis that this adhesive can provide great bonding/debonding ability without distortion. We demonstrated the fabrication of a rectangular product using a 3D printing method using our acrylic adhesive as a build sheet. Mounting ability and workability were satisfactory and dimension deviation of the product was tiny. Because the product is easily detachable from the acrylic adhesive developed here than conventional build sheets, it is expected that this will provide work convenience to users who use the 3D printer.

Fabrication and Characterization of PZT Suspensions for Stereolithography based on 3D Printing

  • Cha, JaeMin;Lee, Jeong Woo;Bae, Byeonghoon;Lee, Seong-Eui;Yoon, Chang-Bun
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.360-364
    • /
    • 2019
  • PZT suspensions for photo-curable 3D printing were fabricated and their characteristics were evaluated. After mixing the PZT, photopolymer, photo-initiator, and dispersant for 10 min by using a high-shear mixer, the viscosity characteristics were investigated based on the powder content. To determine an appropriate dispersant content, the dispersant was mixed at 1, 3, and 5 wt% of the powder and a precipitation test was conducted for two hours. Consequently, it was confirmed that the dispersibility was excellent at 3 wt%. Through thermogravimetric analysis, it was confirmed that weight reduction occurred in the photopolymer between 120? and 500?, thereby providing a debinding heat treatment profile. The fabricated suspensions were cured using UV light, and the polymer was removed through debinding. Subsequently, the density and surface characteristics were analyzed by using the Archimedes method and field-emission scanning electron microscopy. Consequently, compared with the theoretical density, an excellent characteristic of 97% was shown at a powder content of 87 wt%. Through X-ray diffraction analysis, it was confirmed that the crystallizability improved as the solid content increased. At the mixing ratio of 87 wt% powder and 13 wt% photo-curable resin, the viscosity was 3,100 cps, confirming an appropriate viscosity characteristic as a stereolithography suspension for 3D printing.

UV-nanoimprint Patterning Without Residual Layers Using UV-blocking Metal Layer (UV 차단 금속막을 이용한 잔류층이 없는 UV 나노 임프린트 패턴 형성)

  • Moon Kanghun;Shin Subum;Park In-Sung;Lee Heon;Cha Han Sun;Ahn Jinho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.275-280
    • /
    • 2005
  • We propose a new approach to greatly simplify the fabrication of conventional nanoimprint lithography (NIL) by combined nanoimprint and photolithography (CNP). We introduce a hybrid mask mold (HMM) made from UV transparent material with a UV-blocking Cr metal layer placed on top of the mold protrusions. We used a negative tone photo resist (PR) with higher selectivity to substrate the CNP process instead of the UV curable monomer and thermal plastic polymer that has been commonly used in NIL. Self-assembled monolayer (SAM) on HMM plays a reliable role for pattern transfer when the HMM is separated from the transfer layer. Hydrophilic $SiO_2$ thin film was deposited on all parts of the HMM, which improved the formation of SAM. This $SiO_2$ film made a sub-10nm formation without any pattern damage. In the CNP technique with HMM, the 'residual layer' of the PR was chemically removed by the conventional developing process. Thus, it was possible to simplify the process by eliminating the dry etching process, which was essential in the conventional NIL method.

  • PDF

Development of a Compact Desktop-sized Roll-to-roll Nanoimprinting System for Continuous Nanopatterning (데스크탑 규모의 간결한 롤투롤 나노임프린팅 기반 나노패턴 연속가공 시스템 개발)

  • Lee, Jeongsoo;Lee, Jihun;Nam, Seungbum;Cho, Sungil;Jo, Yongsu;Go, Minseok;Lee, Seungjo;Oh, Dong Kyo;Kim, Jeong Dae;Lee, Jae Hyuk;Ok, Jong G.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.96-101
    • /
    • 2017
  • We have developed a compact desktop-sized nanopatterning system driven by the Roll-to-Roll (R2R) nanoimprinting (NIL) principle. The system realizes the continuous and high-speed stamping of various nanoscale patterns on a large-area flexible substrate without resorting to ponderous and complicated instruments. We first lay out the process principle based on continuous NIL on a UV-curable resin layer using a flexible nanopatterned mold. We then create conceptual and specific designs for the system by focusing on two key processes, imprinting and UV curing, which are performed in a continuous R2R fashion. We build a system with essential components and optimized modules for imprinting, UV curing, and R2R conveying to enable simple but effective nanopatterning within the desktop volume. Finally, we demonstrate several nanopatterning results such as nanolines and nanodots, which are obtained by operating the built desktop R2R NIL system on transparent and flexible substrates. Our system may be further utilized in the scalable fabrication of diverse flexible nanopatterns for many functional applications in optics, photonics, sensors, and energy harvesters.

Study on the Improved Abrasion Resistance of Polycarbonate Substrate by UV-curable Organic/Inorganic Hybrid Coatings (자외선 경화형 유기/무기 복합코팅에 의한 폴리카보네이트의 내마모성 향상 연구)

  • 윤석은;우희권;김동표
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.389-398
    • /
    • 2000
  • Transparent, abrasion resistant coatings with 4~13 ${\mu}{\textrm}{m}$ thickness were prepared by spin-coating on polycarbonates with organic/inorganic hybrid solutions, followed by UV curing and heat treatment at 12$0^{\circ}C$ for 12 hours. The coating solutions were composed of inorganic phase and organic phase in 0:100, 20:80, 30:70, 50:50, 80:20 wt% ratios, respectively, mixed with photoinitiator, senaitizer and surfactant. The inorganic phase was formed by sol-gel reaction of TEOS and silane coupling agent MPTMS in 1 : 2 or 2 : 1 molar ratios, the organic phase consisted of difunctional urethane acrylate oligomeric resin, multifunctional acrylate TMPTA and HDDA in 4 : 3 : 3 wt% ratio. The coating systems were investigated by FT-IR, $^{29}$ Si-NMR spectra. In addition, TGA/DSC for thermal analysis and SEM, AFM observation for coated surface were examined. Gererally, the homogeneity of phases, the surface smoothness of coating and abrasion resistance were improved with the higher content of inorganic component. Namely, coating system with below 10 $\AA$ surface roughness and T$_{g}$ of 15$0^{\circ}C$ showed only 10% decrease in light transmittance after abrasion test, whereas uncoated polycarbonate substrate exhibited 46% decrease..

  • PDF

Study on Effect of the printing direction and layer thickness for micro-fluidic chip fabrication via SLA 3D printing (적층 방식 3차원 프린팅에 의한 미세유로 칩 제작 공정에서 프린팅 방향 및 적층 두께의 영향에 관한 연구)

  • Jin, Jae-Ho;Kwon, Da-in;Oh, Jae-Hwan;Kang, Do-Hyun;Kim, Kwanoh;Yoon, Jae-Sung;Yoo, Yeong-Eun
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.58-65
    • /
    • 2022
  • Micro-fluidic chip has been fabricated by lithography process on silicon or glass wafer, casting using PDMS, injection molding of thermoplastics or 3D printing, etc. Among these processes, 3D printing can fabricate micro-fluidic chip directly from the design without master or template for fluidic channel fabricated previously. Due to this direct printing, 3D printing provides very fast and economical method for prototyping micro-fluidic chip comparing to conventional fabrication process such as lithography, PDMS casting or injection molding. Although 3D printing is now used more extensively due to this fast and cheap process done automatically by single printing machine, there are some issues on accuracy or surface characteristics, etc. The accuracy of the shape and size of the micro-channel is limited by the resolution of the printing and printing direction or layering direction in case of SLM type of 3D printing using UV curable resin. In this study, the printing direction and thickness of each printing layer are investigated to see the effect on the size, shape and surface of the micro-channel. A set of micro-channels with different size was designed and arrayed orthogonal. Micro-fluidic chips are 3D printed in different directions to the micro-channel, orthogonal, parallel, or skewed. The shape of the cross-section of the micro-channel and the surface of the micro-channel are photographed using optical microscopy. From a series of experiments, an optimal printing direction and process conditions are investigated for 3D printing of micro-fluidic chip.

Synthesis of UV Curable Polyurethane Adhesives Based on Various Compositions of Mixed Polyol with Improved Adhesion and Flexural Properties (다양한 조성의 혼용 폴리올에 기초한 접착력 및 굴곡성이 향상된 자외선 경화형 폴리우레탄 접착제의 합성)

  • Won-Young Lee;Soo-Yong Park;Guni Kim;Ildoo Chung
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.137-143
    • /
    • 2022
  • In this study, the polyurethane acrylates (PUA) resin with good adhesive and flexibility for adhesive for shoes and clothing were synthesized using that poly(tetramethylene adiphate glycol) (PTAd), poly(tetramethylene ether glycol) (PTMG) as polyester polyol and polyether polyol respectively, including 4,4'-methylene diphenyl diisocyanate (MDI), isophorone diisocyanate (IPDI), 1,4-butandiol (1,4-BD), 2-hydroxyethyl methacrylate (2-HEMA) and dibutyl amine (DBA). The effect of polyol blend in the polyurethane acrylate on thermal and mechanical properties, adhesion strength and flexural strength were studied. The glass transition temperature (Tg) of PUA was confirmed in range of -70~-40 ℃. In addition, the glass transition temperature (Tg), decomposition temperature (Td), tensile strength adhesion strength and heat resistance were increased as increasing of PTAd amount while the elongation, water resistance and flexural properties were decreased. The synthesized polyurethane acrylate with 5:5 ratio of PTAd and PTMG indicated the highest adhesion strength and flexural properties.