DOI QR코드

DOI QR Code

Roll-to-roll process for large-area transfer of Ag nanowire electrode

은 나노 와이어 전극의 대면적 전사를 위한 롤 투 롤 공정

  • Park, Yangkyu (Department of Mechanical Design Engineering, Chonnam National University) ;
  • Kim, Jae Pil (Lighting Materials and Components Research Center, Korea Photonics Technology Institute (KOPTI)) ;
  • Kim, Wan Ho (Lighting Materials and Components Research Center, Korea Photonics Technology Institute (KOPTI)) ;
  • Jung, Kang (Department of Mechanical Design Engineering, Chonnam National University) ;
  • Jeong, Ho-Jung (Lighting Materials and Components Research Center, Korea Photonics Technology Institute (KOPTI))
  • 박양규 (전남대학교, 기계설계공학부) ;
  • 김재필 (한국광기술원, 조명소재부품연구센터) ;
  • 김완호 (한국광기술원, 조명소재부품연구센터) ;
  • 정강 (전남대학교, 기계설계공학부) ;
  • 정호중 (한국광기술원, 조명소재부품연구센터)
  • Received : 2022.05.11
  • Accepted : 2022.05.31
  • Published : 2022.06.30

Abstract

This study presents a roll-to-roll process which is capable of Ag nanowire (AgNW) transfer from polyethylene terephthalate (PET) film to polycarbonate (PC) film. We developed a roll-to-roll machine that consists of two film suppliers, a coater of photo-curable resin, a film laminator, an ultraviolet (UV) exposure unit, and a film winder to facilitate large-area electrode transfer between different flexible substates. Using the process, optimal fabrication condition was investigated by parametric experiments in terms of the UV exposure time, number of thermal cycling, and exposure time of high temperature and humidity. A fabricated AgNW on PC film showed sheet resistance of 52 Ω/sq and optical transmittance of approximately 80 % over a range of visible light.

Keywords

Acknowledgement

This research was supported by the Ministry of Trade, Industry & Energy (MOTIE, Korea) under the Industrial Technology Innovation Program (Grant No. 20004044) and Chonnam National University (Smart Plant Reliability Center) grant funded by the Ministry of Education, South Korea, (2020R1A6C101B197). All correspondence should be addressed to the authors Kang Jung and Ho-Jung Jeong.

References

  1. Q. H. Tran, D. T. Chu, Q. T. Do, S. H. Pham, P. Leclere, T. D. Nguyen, D. C. Nguyen, Enhancement of electrical and thermal properties of silver nanowire transparent conductive electrode by Ag coating, Mater. Sci. Eng. B, 278 (2022) 115640. https://doi.org/10.1016/j.mseb.2022.115640
  2. E. M. Doherty, S. De, P. E. Lyons, A. Shmeliov, P. N. Nirmalraj, V. Scardaci, J. Joimel, W. J. Blau, J. J. Boland, J. N. Coleman, The spatial uniformity and electromechanical stability of transparent, conductive films of single walled nanotubes, Carbon, 47 (2009) 2466-2473. https://doi.org/10.1016/j.carbon.2009.04.040
  3. D. S. Hecht, L. Hu, G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures, Adv. Mater., 23 (2011) 1482-1513. https://doi.org/10.1002/adma.201003188
  4. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, R. S. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes, Nano Lett., 9 (2009) 4359-4363. https://doi.org/10.1021/nl902623y
  5. J. Lee, P. Lee, H. Lee, D. Lee, S. S. Lee, S. H. Ko, Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel, Nanoscale, 4 (2012) 6408-6414. https://doi.org/10.1039/c2nr31254a
  6. X. Y. Zeng, Q. K. Zhang, R. M. Yu, C. Z. Lu, A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer, Adv. Mater., 22 (2011) 4484-4488. https://doi.org/10.1002/adma.201001811
  7. L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, Y. Cui, Scalable coating and properties of transparent, flexible, silver nanowire electrodes, ACS Nano, 4 (2010) 2955-2963. https://doi.org/10.1021/nn1005232
  8. S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. N. Coleman, Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios, ACS Nano, 3 (2009) 1767-1774. https://doi.org/10.1021/nn900348c
  9. A. R. Madaria, A. Kumar, F. N. Ishikawa, C. Zhou, Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique, Nano Res., 3 (2010) 564-573. https://doi.org/10.1007/s12274-010-0017-5
  10. K. M. A. E. Nour, A. A. Eftaiha, A. A. Warthan, R. A. Ammar, Synthesis and applications of silver nanoparticles, Arabian J. Chem., 3 (2010) 135-140. https://doi.org/10.1016/j.arabjc.2010.04.008
  11. M. Kaikanov, A. Kemelbay, B. Amanzhulov, G. Demeuova, G. Akhtanova, F. Bozheyev, A. Tikhonov, Electrical conductivity enhancement of transparent silver nanowire films on temperature-sensitive flexible substrates using intense pulsed ion beam, Nanotechnol., 32 (2021) 145706. https://doi.org/10.1088/1361-6528/abd49e
  12. A. Kumar, M. O. Shaikh, C. H. Chuang, Silver nanowire synthesis and strategies for fabricating transparent conducting electrodes, Nanomater., 11 (2021) 693. https://doi.org/10.3390/nano11030693
  13. W. Li, A. Meredov, A. Shamim, Coat-and-print patterning of silver nanowires for flexible and transparent electronics, NPJ Flex. Electron., 3 (2019) 1-7. https://doi.org/10.1038/s41528-018-0045-x
  14. Y. W. Shin, K. B. Kim, S. J. Noh, S. Y. Soh, Effects of the particle size and shape of silver nanoparticles on optical and electrical characteristics of the transparent conductive film with a self-assembled network structure, Appl. Chem. Eng., 29 (2018) 162-167. https://doi.org/10.14478/ACE.2017.1107
  15. A. Chamas, H. Moon, J. Zheng, Y. Qiu, T. Tabassum, J. Jang, M. A. Omar, S. Scott, S. Suh, Degradation rates of plastics in the environment. ACS Sustain Chem. Eng. 8 (2020) 3494-3511. https://doi.org/10.1021/acssuschemeng.9b06635
  16. "five best UV-resistant plastics, https://www.fastradius.com/resources/top-uvresistant-plastics/."