• Title/Summary/Keyword: UV curable polymer

Search Result 119, Processing Time 0.021 seconds

Properties of UV Curable Coating Film Containing Colloidal Silica Acrylate (콜로이드실리카아크릴레이트를 함유한 자외선 경화형 코팅필름의 특성)

  • Lee, Bong-Woo;Hong, Jin-Who;Bang, Moon-Soo;Oh, Hyung-Sik;Kim, Dae-Jun;Kim, Hyun-Joong
    • Journal of Adhesion and Interface
    • /
    • v.4 no.1
    • /
    • pp.9-17
    • /
    • 2003
  • The UV hard coating materials are attracting more and more attention to modern industry, in terms of the development of low or non solvent coating materials which will contribute to economizing both materials and energy and to reducing pollution. This study was performed in order to invent UV curable coating materials containing colloidal silica which have actual industrial applications. As results of experiments, the oligomers type and the concentration of colloidal silica acrylate oligomer (SAOC) have an influence on various especially, The properties of UV hardening cooling, such as chemical, abrasion resistance and weatherability, were greatly enhanced, the impact properties of coated polycarbonate substrate were improved compared with the noncoated that. The UV cured films containing 30 wt% SAOC obtained showed the best properties.

  • PDF

Synthesis and Characteristics of 2 Step-curable Shape Memory Polyurethane (2단계 경화형 형상기억 폴리우레탄의 합성 및 분석)

  • Noh, Geon Ho;Lee, Seungjae;Bae, Seong-Guk;Jang, Seong-Ho;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1023-1028
    • /
    • 2018
  • Shape memory materials are widely used in high-tech industries. Although shape memory polymers have been developed, they have a disadvantage, only unidirectional resilience. Shape memory polymers with bi-directional recovery resilience have been actively studied. In this study, a bidirectional shape memory polyurethane was synthesized using poly(${\varepsilon}$-caprolactone) diol, methylene dicyclohexyl diisocyanate, and hydroxyethyl acrylate. The first physical curing occurred between hard segments and hydrogen bondings when the solution was dried. The second curing in acrylate groups was performed by UV exposure. A degree of curing was analyzed by infrared spectroscopy. The shape memory properties of 2 step-cured polyurethanes were investigated as a function of UV curing time.

Effect of Photoinitiator System on Mechanical Properties and Water Sorption Behavior of Urethane Acrylate/MMT Nanocomposite by UV Radiation Curing (UV 경화형 우레탄 아크릴레이트/MMT 나노복합체의 기계적 성질과 내흡수성에 대한 광개시제의 영향)

  • Kim, Ho-Gyum;Min, Kyung-Eun
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.256-260
    • /
    • 2015
  • The addition of montmorillonite (MMT) in the UV curable polyurethane diacrylate based resins was investigated to fabricate nanocomposites with improved mechanical properties and water sorption behavior using different photoinitiator systems. As a result, it was observed that 1 wt% of clay loading fairly improved tensile resistance and water uptake behavior. It can be also confirmed that dual photoinitiator system consisted of benzyldimethyl ketal and bisacyl phosphine oxide exhibited enhanced energy absorption band 340~450 nm even with 3 wt% of MMT concentration, which may affect the curing behavior of nanocomposite especially in our UV lamp system.

Synthesis of UV Curable 4,4'-Thiodibenzenethiol-based Epoxy Acrylate and Their Refractive Index Behavior (4,4'-Thiodibenzenethiol을 이용한 광경화형 에폭시 아크릴레이트 합성과 굴절률에 관한 연구)

  • Baek, Seung-Suk;Lee, Sang Won;Hwang, Seok-Ho
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.121-126
    • /
    • 2013
  • UV-curable high refractive index di-functional epoxy acrylate, 4,4'-thiodibenzenethiol diglycidyl ether diacrylate, was synthesized from acrylic acid and 4,4'-thiodibenzenethiol diglycidyl ether that was obtained by reacting 4,4'-thiodibenzenethiol and epichlorohydrin using a direct method (Taffy process). Its chemical structure was identified by $^1H$ NMR and FTIR. After its dilution with a reactive diluent, 2-phenoxythiol ethyl acrylate as 5, 10, 15, 20, and 30 wt% content, the relationship between their viscosity and refractive index was investigated. Their degree of cure decreased with increasing the amount of reactive diluent, and the refractive index of UV-cured film increased with increasing the degree of cure.

Fabrication and Characterization of UV-curable Conductive Transparent Film with Polyaniline Nanofibers (폴리아닐린 나노섬유를 이용한 광경화형 전도성 투명필름의 제조 및 특성)

  • Kim, Sung-Hyun;Song, Ki-Gook
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.531-535
    • /
    • 2012
  • Conductive polyaniline (PANI) nanofibers in UV-curable resin were used for a transparent conductive film. The emeraldine-salt PANI (ES-PANI) nanofibers were prepared by chemical oxidation polymerization of aniline, which could be changed into emeraldine-base PANI by dedoping. EB-PANI nanofibers as a precursor for conductive fillers were thereby transformed into re-dpoed PANI (rES-PANI) by dodecylbenzenesulfonic acid in the UV-curable resin solution. rES-PANI nanofibers have high conductivity and long-term stability in the solution without a defect of nanostructure. The resulting conductive resin solution was proved to be highly stable where no precipitation of rES-PANI fillers was observed over a period of 3 months. The transparent film was spin-casted on a poly(methyl methacrylate) sheet of thickness ca. $5{\mu}m$. A surface resistance of $6.5{\times}10^8{\Omega}/sq$ and transmittance at 550 nm of 91.1% were obtained for the film prepared with a concentration of 1.4 wt% rES-PANI nanofibers in the solution. This transformation process of rES-PANI from ES-PANI by dedoping-redoping can be an alternative method for the preparation of an antistatic protection film with controllable surface resistance and optical transparencies with the PANI concentration in UV-curable solution.

A Study on the dynamic viscoelasticity of UV curing polymer and alkyd resin composite materials (UV경화성 수지와 Alkyd수지 복합재료의 경화거동과 동적 점탄성에 관한 연구)

  • 정원식;최정병;김용욱
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.16 no.3
    • /
    • pp.29-41
    • /
    • 1998
  • The ultraviolet(UV)-curable materials wildly have been used as a ink and coating materials. A according to measure UV polymerization phase separation of acryl groups 2,3,4-functional monomer, a few experiments were performed gel fraction, dynamic viscosity of alkyd resin blend system. Dependence of photoiniator concentration and various monomer, alkyd resin content investigated structural changes of films cured by UV irradiation. Curing rate measured UV irradiation under $25^{\circ}C$, cell gap 7cm and film thickness 100${\mu}{\textrm}{m}$. In results, it was through that the viscoelastic properties of films cured with increasing the ratios of monomer/alkydresin contents are network polymer in properties such as viscoelasticity.

  • PDF

Curing Properties of UV-LED Curable Color Coating (UV-LED 경화형 칼라 코팅의 경화특성 연구)

  • Ho, Shin-Chan;Kim, Jong-Gu;Hong, Jin-Who;Ahn, Tae-Jung;Kim, Hyun-Kyoung
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.31-37
    • /
    • 2012
  • In this study, we investigated the curing properties of UV-LED curable color coating. Specially, the effects of UV-LED wavelength (365, 395, and 405 nm), inert gas, the concentration of photosensitizer, and dual curing on the curing behavior of UV-LED coating systems were studied. The photopolymerization behaviors and the unreacted acrylate groups at Film-air (FA) interface and Film-substrate (FS) interface were investigated by photo differential scanning calorimetry (Photo-DSC) and Fourier-transform infrared spectroscopy with attenuated total reflection (FT-IR/ATR), respectively. Photo-DSC results showed that the heat flow and the ultimate conversion for coating system cured by 405 nm UV-LED were higher than the corresponding values for coating systems cured by 395 and 365 nm UV-LED. FT-IR/ATR results showed that the UV-LED curing systems improved interior and through curing of the coating film, but significantly are affected by oxygen inhibition at FA-interface. The inert environment such as nitrogen purging and the dual curing improved the surface and interior curing of the coating films.

Fabrication of a Y-branch Phase Modulator Using an Electro-Optic Polymer (전기광학 폴리머를 이용한 Y 분기형 위상 변조기의 제작)

  • 오영훈;신상영
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.34-35
    • /
    • 2000
  • A Y-branch phase modulator made of an electro-optic(EO) polymer has been designed and fabricated. An EO polymer, PMMA-DR1, is used for the core layer, and UV-curable polymers, UV-15 and UV-15 LV, for the cladding layers. The rib type polymeric waveguides are fabricated by the reactive ion etching method and their EO effects are obtained by the poling process. The optical properties of the fabricated phase modulator are as follows: the halfwave voltage, $V_{\pi}$, is 25 V, the insertion loss of TM mode is 13.8 dB, and the intensity modulation is 0.17 % (V).

  • PDF

Enhanced Adhesion and Transmittance Uniformity in Laminated Polymer-Dispersed Liquid Crystal Films

  • Yoo, Seong-Hyeon;Park, Min-Kyu;Park, Ji-Sub;Kim, Hak-Rin
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.753-761
    • /
    • 2014
  • We propose a two-step UV irradiation procedure to fabricate polymer-dispersed liquid crystal (PDLC) films by lamination. During the first UV treatment, before lamination, the UV-curable monomers coated on one film substrate are solidified through photo-polymerization as the phase separation between the liquid crystals and the monomers. Introducing an adhesion-enhancement layer on the other plastic substrate and controlling the UV irradiation conditions ensure that UV-induced cross-linkable functional groups remain on the surfaces of the photo-polymerized layers. Thereby, the adhesion stability between the top and bottom films is much improved during a second (post-lamination) UV treatment by further UV-induced cross-linking at the interface. Because the adhesion-enhancement and PDLC layers prepared by the bar-coating process are solidified before lamination, the PDLC droplet distribution and the cell gap between the two plastic substrates remain uniform under the lamination pressure. This ensures that the voltage-controlled light transmittance is uniform across the entire sample.

Antistatic Behavior of UV-curable Multilayer Coating Containing Organic and Inorganic Conducting Materials (유·무기 전도성 물질을 함유한 UV 경화형 다층 코팅의 대전방지 특성)

  • Kim, Hwa-Suk;Kim, Hyun-Kyoung;Kim, Yang-Bae;Hong, Jin-Who
    • Journal of Adhesion and Interface
    • /
    • v.3 no.3
    • /
    • pp.22-29
    • /
    • 2002
  • UV curable coating system described here consists of double layers, namely under layer and top laser coatings. The former consists of organic-inorganic conductive materials and the latter consists of multifunctional acrylates. Transparent double layer coatings were prepared on the transparent substrates i.e. PMMA, PC, PET etc. by the wet and wet coating procedure. Their surface resistances and film properties were measured as a function of the top layer thickness and relative humidity. As the thickness of the top layer was less than $10{\mu}m$, the surface resistance in the range of $10^8{\sim}10^{10}{\Omega}/cm^2$ was obtained. The surface properties of the two-layer coating were remarkably improved compared with the single layer coating. The effects of migration of conducting materials on the film properties of multilayer coating were investigated by using contact angle and Fourier transform infrared/attenuated total reflection(FT-IR/ATR). It was found that the migration of dopant(dodecyl benzenesulfonic acid, DBSA) molecules were occurred from film-substrate interface to film-air interface in the organic conductive coating system but not in the inorganic one.

  • PDF