Browse > Article
http://dx.doi.org/10.7317/pk.2013.37.1.121

Synthesis of UV Curable 4,4'-Thiodibenzenethiol-based Epoxy Acrylate and Their Refractive Index Behavior  

Baek, Seung-Suk (Department of Polymer Science and Engineering and Center for Photofunctional Energy Materials, Dankook University)
Lee, Sang Won (Department of Chemical Engineering, Soongsil University)
Hwang, Seok-Ho (Department of Polymer Science and Engineering and Center for Photofunctional Energy Materials, Dankook University)
Publication Information
Polymer(Korea) / v.37, no.1, 2013 , pp. 121-126 More about this Journal
Abstract
UV-curable high refractive index di-functional epoxy acrylate, 4,4'-thiodibenzenethiol diglycidyl ether diacrylate, was synthesized from acrylic acid and 4,4'-thiodibenzenethiol diglycidyl ether that was obtained by reacting 4,4'-thiodibenzenethiol and epichlorohydrin using a direct method (Taffy process). Its chemical structure was identified by $^1H$ NMR and FTIR. After its dilution with a reactive diluent, 2-phenoxythiol ethyl acrylate as 5, 10, 15, 20, and 30 wt% content, the relationship between their viscosity and refractive index was investigated. Their degree of cure decreased with increasing the amount of reactive diluent, and the refractive index of UV-cured film increased with increasing the degree of cure.
Keywords
epoxy acrylate; 4,4'-thiodibenzenethiol diglycidyl ether; Taffy process; UV-curing; refractive index; degree of cure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. K. Shobha, H. Johnson, M. Sankarapandian, Y. S. Kim, P. Rangarajan, D. G. Baird, and J. E. Mcgrath J. Polym. Sci. Part A: Polym. Chem., 39, 2904 (2001).   DOI   ScienceOn
2 W. Groh and A. Zimmermann, Macromolecules, 24, 6660 (1991).   DOI
3 A. Nebioglu, J. A. Leon, and I. V. Khudyakov, Ind. Eng. Chem. Res., 47, 2155 (2008).   DOI   ScienceOn
4 D. S. Amey and T. E. Wood, U.S. Patent 6,432,526 B1 (2002).
5 J. Wen and G. L. Wilkes, Chem. Mater., 8, 1667 (1996).   DOI   ScienceOn
6 C. Decker, T. N. Viet, D. Decker, and E. Weber-Koehl, Polymer, 42, 5531 (2001).   DOI   ScienceOn
7 Y. Otsubo, T. Amari, and K. Watanabe, J. Appl. Polym. Sci., 29, 4071 (1984).   DOI
8 T. Matynia, R. Kutyla, K. Bukat, and B. Pienkowska, J. Appl. Polym. Sci., 55, 1583, (1995).   DOI   ScienceOn
9 M Bajpai, V. Shukla, and A. Kumar, Prog. Org. Coat., 44, 271 (2002).   DOI   ScienceOn
10 T. Maruno, S. Ishibashi, and K. Nakamura, J. Polym. Sci. Part A: Polym. Chem., 32, 3211 (1994).   DOI   ScienceOn
11 M. A. Ali, M. A. Khan, and K. M. I. Ali, J. Appl. Polym. Sci., 60, 879 (1996).   DOI
12 J. W. Yoo and D. S. Kim, Polymer(Korea), 23, 376 (1999).
13 H. D. Kim, D. J. Lee, J. H. Choi, and C. C. Park, Polymer(Korea), 18, 38 (1994).
14 K. H. Lee and B. K. Kim, Korea Polym. J., 4, 1 (1996).
15 H. D. Kim, S. G. Kang, and C. S. Ha, J. Appl. Polym. Sci., 46, 1339 (1992).   DOI
16 R. Bongiovanni, G. Malucelli, M. Sangermano, and A. Priola, Prog. Org. Coat., 36, 70 (1999).   DOI   ScienceOn
17 W. Shi, and B. Randy, J. Appl. Polym. Sci., 51, 1129 (1994).   DOI   ScienceOn
18 T. R. Williams, J. Appl. Polym. Sci., 31, 1293 (1986).   DOI   ScienceOn
19 A. Kumar and S. K. Gupta, Reaction Engineering of Step Growth Polymerization, Plenum, New York, 1987.
20 C. Dizman, S. Ates, L. Torun, and Y. Yagci, Beilstein J. Org. Chem., 6(56), doi:10.3762/bjoc.6.56 (2010).