• Title/Summary/Keyword: UV blocking film

Search Result 20, Processing Time 0.029 seconds

Characteristics of Polycarbonate Film by Ion Beam for UV Block (이온빔을 이용한 폴리카보네이트 필름의 자외선 차단 특성)

  • Choi, Byoung-Hoon;Kim, Young-Jun
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.588-592
    • /
    • 2005
  • For the purpose of obtaining polycarbonate film which blocks ultra-violet ion beam was irradiated onto the surface of PC film. This method has gotten several advantages compared with the techniques, such as the protection of changes in film thickness and UV blocking material deposited onto a base film. In order to investigate UV blocking PC film, the optical and chemical characteristics, surface morphology and lightfastness were confirmed by UV/Vis, FTIR(ATR) spectroscopy, AFM, and Q-UV fasoess analyses. As a result, it was shown that the modified PC film was able to block almost all of UV region and easily control the degree of UV block. The optical changes in the film were attributed to chemical changes in PC surface by ion beam irradiation. Moreover, we expect that the modified PC film can durably block UV due to no changes in colour and UV transmittance after UV fastness test.

Development of harmful ultraviolet blocking transparent flexible device using TiO2-x thin film process (TiO2-x 산화물 박막공정을 이용한 유해자외선차단 투명유연소재개발)

  • Kim, Geug Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.3
    • /
    • pp.123-131
    • /
    • 2019
  • In this study, the development of transparent UV blocking material using $TiO_{2-x}$ oxide thin film process was developed. A process technology is related to a process technology for making a sample with ultraviolet-shielding property of visible light transmittance of 78 % or more (total light transmittance at 550 nm) and of a UV cut-off characteristic of more than 95 % at 315 nm in ultraviolet wavelength band. In this study, it is possible to establish a flexible device process condition of high performance ultraviolet (UV) shielding thin film, to design mixed type of transparent flexible device with heterogeneous characteristics and to formulate composite deposition technology, according to various market demands. Establishment of actual roll-to-roll continuous process and equipment and process technology will affect related industries greatly.

Study of Lettuce Growth Characteristic on Selective Light Transmitting Filter Film Covered Greenhouse (선택적 광 투과에 따른 상추 생육특성)

  • Kang, D.H.;Hong, S.J.;Lee, J.W.;Kim, D.E.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2020
  • This study aimed to investigate responses of plant growth and photosynthesis to different kinds of covering materials with selective light transmit for red leaf lettuce (Lactuca sativa L.). Experimental pot design was attached UV blocking filter, red filter, blue filter, and green filter. The kinds of covering materials showed significant results for plant growth especially control, UV blocking filter, and red filter. The photosynthetic rate and anthocyanin content of red leaf lettuce were higher in control and UV blocking filter than others. The quality of red leaf lettuce was low in red, green, and blue film treatments because of too low anthocyanin content.

Preparations and Antistatic/UV Blocking Properties of Dual Functional Phthalocyanine Materials (기능성 프탈로시아닌 물질의 제조 및 대전방지/UV 차단 특성)

  • Kang, Young-Goo;Ihm, Dae-Woo;Kim, Shi-Surk;Park, Byoung-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.1
    • /
    • pp.66-71
    • /
    • 2008
  • A new route to phthalocyanine complexes were developed to synthesize these products by fusion in the absence of solvent. This new method of synthesis without using solvent has advantages over the conventional synthetic methods since there are no risk of explosion and formation of harmful vapor from organic solvent. Reaction of PcFe with axial ligands such as $PcFe(4-VP)_2$[Pc: Phthalocyanine, 4-VP: 4-Vinylpyridine] and $PcFe(VIM)_2$[VIM: 1-Vinylimidazole] afforded powderlike, pure dark greenish blue colored products. The resulted products are soluble in $CH_2Cl_2$ and found to be complexes of the type $PcFeL_2$. Spectral properties were studied with ATR-FTIR and UV/Vis. Thermal and electrical characterization was also performed. Phthalocyanine complexes exhibit useful properties such as UV/Vis blocking, antistatic characteristics and excellent thermal stability and we anticipate various applicability in numerous products.

Effects of Package Materials on Quality Change of Pine Bud Beverage Under Ultraviolet Light

  • An, Duek-Jun
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.4
    • /
    • pp.349-353
    • /
    • 2009
  • The effects of packaging materials on preserving the functional component of pine bud beverage stored under UV (ultraviolet) light exposure conditions were studied. The order of UV light blocking properties of the selected packages was: opaque can> opaque PET (polyethylene terepthalate) with green lamination=transparent PET with 10% PEN (polyethylene naphthalate) blending> transparent PET, and did not depend on film thickness in specified range. At 20${^{\circ}C}$, the order of preserving degree of original color and endobornyl acetate, which is quality index of pine bud beverage, was the same as above. Exposure to UV light can cause of deterioration of functional food components, but green color lamination and blending of PEN materials with transparent PET help to preserve the UV sensitive pine bud beverage components. However, the treated PET bottles have poorer preservation capabilities than the opaque cans. Transparent PET with PEN blending, in particular, will be very useful packaging material for colorful functional beverage preservation by helping to protect the ingredients while attracting consumer attention.

Hydrophilic Modification of Polypropylene Hollow Fiber Membrane by Dip Coating, UV Irradiation and Plasma Treatment

  • Kim Hyun-Il;Kim Jin Ho;Kim Sung Soo
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • PP hollow fiber membrane was hydrophilized by EVOH dip coating followed by low temperature plasma treatment and UV irradiation. EVOH coating attained high water flux without any prewetting but its stability did not guaranteed at high water permeation rate. At high water permeation rate, water flux declined gradually due to swelling and delamination of the EVOH coating layer causing pore blocking effect. However, plasma treatment reduces the swelling, which suppress delamination of the EVOH coating layer from PP support result in relieving the flux decline. Also, UV irradiation helped the crosslinking of the EVOH coating layer to enhance the performance at low water permeation rate. FT-IR and ESCA analyses reveal that EVOH dip coating performed homogeneously through not only membrane surface but also matrix. Thermogram of EVOH film modified plasma treatment and W irradiation show that crosslinking density of EVOH layer increased. Chemical modification by plasma treatment and UV irradiation stabilized the hydrophilic coating layer to increase the critical flux of the submerged membrane.

Analysis of suppressed thermal conductivity using multiple nanoparticle layers (다중층 나노구조체를 통한 열차단 특성 제어)

  • Tae Ho Noh;Ee Le Shim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.233-242
    • /
    • 2023
  • In recent years, energy-management studies in buildings have proven useful for energy savings. Typically, during heating and cooling, the energy from a given building is lost through its windows. Generally, to block the entry of ultraviolet (UV) and infrared (IR) rays, thin films of deposited metals or metal oxides are used, and the blocking of UV and IR rays by these thin films depends on the materials deposited on them. Therefore, by controlling the thicknesses and densities of the thin films, improving the transmittance of visible light and the blocking of heat rays such as UV and IR may be possible. Such improvements can be realized not only by changing the two-dimensional thin films but also by altering the zero-dimensional (0-D) nanostructures deposited on the films. In this study, 0-D nanoparticles were synthesized using a sol -gel procedure. The synthesized nanoparticles were deposited as deep coatings on polymer and glass substrates. Through spectral analysis in the UV-visible (vis) region, thin-film layers of deposited zinc oxide nanoparticles blocked >95 % of UV rays. For high transmittance in the visible-light region and low transmittance in the IR and UV regions, hybrid multiple layers of silica nanoparticles, zinc oxide particles, and fluorine-doped tin oxide nanoparticles were formed on glass and polymer substrates. Spectrophotometry in the UV-vis-near-IR regions revealed that the substrates prevented heat loss well. The glass and polymer substrates achieved transmittance values of 80 % in the visible-light region, 50 % to 60 % in the IR region, and 90 % in the UV region.

UV-nanoimprint Patterning Without Residual Layers Using UV-blocking Metal Layer (UV 차단 금속막을 이용한 잔류층이 없는 UV 나노 임프린트 패턴 형성)

  • Moon Kanghun;Shin Subum;Park In-Sung;Lee Heon;Cha Han Sun;Ahn Jinho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.275-280
    • /
    • 2005
  • We propose a new approach to greatly simplify the fabrication of conventional nanoimprint lithography (NIL) by combined nanoimprint and photolithography (CNP). We introduce a hybrid mask mold (HMM) made from UV transparent material with a UV-blocking Cr metal layer placed on top of the mold protrusions. We used a negative tone photo resist (PR) with higher selectivity to substrate the CNP process instead of the UV curable monomer and thermal plastic polymer that has been commonly used in NIL. Self-assembled monolayer (SAM) on HMM plays a reliable role for pattern transfer when the HMM is separated from the transfer layer. Hydrophilic $SiO_2$ thin film was deposited on all parts of the HMM, which improved the formation of SAM. This $SiO_2$ film made a sub-10nm formation without any pattern damage. In the CNP technique with HMM, the 'residual layer' of the PR was chemically removed by the conventional developing process. Thus, it was possible to simplify the process by eliminating the dry etching process, which was essential in the conventional NIL method.

  • PDF

Optically transparent and electrically conductive indium-tin-oxide nanowires for transparent photodetectors

  • Kim, Hyunki;Park, Wanghee;Ban, Dongkyun;Kim, Hong-Sik;Patel, Malkeshkumar;Yadav, Pankaj;Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.390.2-390.2
    • /
    • 2016
  • Single crystalline indium-tin-oxide (ITO) nanowires (NWs) were grown by sputtering method. A thin Ni film of 5 nm was coated before ITO sputtering. Thermal treatment forms Ni nanoparticles, which act as templates to diffuse Ni into the sputtered ITO layer to grow single crystalline ITO NWs. Highly optical transparent photoelectric devices were realized by using a transparent metal-oxide semiconductor heterojunction by combining of p-type NiO and n-type ZnO. A functional template of ITO nanowires was applied to this transparent heterojunction device to enlarge the light-reactive surface. The ITO NWs/n-ZnO/p-NiO heterojunction device provided a significant high rectification ratio of 275 with a considerably low reverse saturation current of 0.2 nA. The optical transparency was about 80% for visible wavelengths, however showed an excellent blocking UV light. The nanostructured transparent heterojunction devices were applied for UV photodetectors to show ultra fast photoresponses with a rise time of 8.3 mS and a fall time of 20 ms, respectively. We suggest this transparent and super-performing UV responser can practically applied in transparent electronics and smart window applications.

  • PDF

Development of the Functional Films Coated with Nano-TiO2 Particles for Food Packaging and Removal of Off-flavor from Soybean Sprouts (나노 TiO2를 적용한 식품 포장 필름 개발 및 콩나물의 이취 제거)

  • Choi, Yeonwook;Jeon, Kyu Bae;Song, Kihyeon;Kim, Jai Neung
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.733-737
    • /
    • 2015
  • For testing the ultraviolet (UV)-blocking property of functional films coated with Nano-$TiO_2$ particles, UV-Vis spectra of oriented polypropylene (OPP) films uncoated and coated with $TiO_2$ of 3% and 5% in Polyurethane (PU) and polyvinyl butyral (PVB)-Cellulose binders were measured. The result of UV-Vis analyses showed that the film coated with 5% $TiO_2$ in PVB binders had a significant effect on UV protection of 90% compared with the film uncoated. Also The result of The photodegradation of methylene blue (MB), OPP films coated with 5% in both PU and PVB binders had a high photocatalytic activity for MB degradation. To evaluate the effect of the developed functional film coated with Nano-$TiO_2$ particles, fresh soybean sprouts were used. Nano-$TiO_2$ coated film was observed to decompose the off-flavor produced by soybean sprouts within packages during distribution, but uncoated film did not. Therefore, Nano-$TiO_2$ coated film package could give the greatest effect in extending the shelf life of soybean sprouts.