Preparations and Antistatic/UV Blocking Properties of Dual Functional Phthalocyanine Materials

기능성 프탈로시아닌 물질의 제조 및 대전방지/UV 차단 특성

  • Kang, Young-Goo (Department of Safety and Health Engineering, Hoseo University) ;
  • Ihm, Dae-Woo (Department of Semiconductor and Display Engineering, Graduate School of Multidisciplinary Technology and Management, Hoseo University) ;
  • Kim, Shi-Surk (Division of General Education, Hoseo University) ;
  • Park, Byoung-Ki (Department of Semiconductor and Display Engineering, Graduate School of Multidisciplinary Technology and Management, Hoseo University)
  • 강영구 (호서대학교 안전보건학과) ;
  • 임대우 (호서대학교 혁신기술.경영융합대학원) ;
  • 김시석 (호서대학교 교양학부) ;
  • 박병기 (호서대학교 안전보건학과)
  • Published : 2008.02.29

Abstract

A new route to phthalocyanine complexes were developed to synthesize these products by fusion in the absence of solvent. This new method of synthesis without using solvent has advantages over the conventional synthetic methods since there are no risk of explosion and formation of harmful vapor from organic solvent. Reaction of PcFe with axial ligands such as $PcFe(4-VP)_2$[Pc: Phthalocyanine, 4-VP: 4-Vinylpyridine] and $PcFe(VIM)_2$[VIM: 1-Vinylimidazole] afforded powderlike, pure dark greenish blue colored products. The resulted products are soluble in $CH_2Cl_2$ and found to be complexes of the type $PcFeL_2$. Spectral properties were studied with ATR-FTIR and UV/Vis. Thermal and electrical characterization was also performed. Phthalocyanine complexes exhibit useful properties such as UV/Vis blocking, antistatic characteristics and excellent thermal stability and we anticipate various applicability in numerous products.

$PcFe(4-VP)_2$[Pc: Phthalocyanine, 4-VP: 4-Vinylpyridine]와 $PcFe(VIM)_2$[VIM: 1-Vinylimidazole]의 제조를 재래식 방법인 유기용제 사용에 따른 폭발 및 유해증기 발생 위험성을 차단하기 위해 무용제 방식으로 ligand인 4-VP와 VIM을 반응매체로 하여 PcFe를 밀폐용기에서 용융시키는 새로운 방법을 도입, 제조하여 분말상 진청록색의 물질을 제조하였다. 이들 물질은 $CH_2Cl_2$에 가용성인 $PeFeL_2$형태의 물질이다. 제조된 물질을 ATR-FTIR, UV/Vis, DSC/TGA, Surface Resistivity Meter를 이용하여 분석한 결과 film 상태에서 UV/Vis 차단 특성이 뛰어남과 동시에 대전 방지특성을 나타내며 또한 내열성이 우수한 물질이 제조되어 사용 및 응용이 가능할 것으로 사료된다.

Keywords

References

  1. M. Hanack, Y. G. Kang, "Synthesis and Properties of (Phthalocyaninato)ruthenium(II) with Bisaxially Coordinated Azanaphthalences", Chem. Ber., Vol. 124, No. 7, pp. 1607-1612, 1991 https://doi.org/10.1002/cber.19911240722
  2. K. Tanoue, K. Morita, H. Maruyama, H. Masuda, "Influence of Functional Group on the Electrification of Organic Pigments", AIChE Journal, Vol. 47, No. 11, pp. 2419-2424, 2001 https://doi.org/10.1002/aic.690471106
  3. O. Slattery, R. Lu, J. Zheng, F. Byers, X. Tang, "Stability Comparison of Recordable Optical Discs-A Study of Error Rates in Harsh Conditions", J. Res.Natl. Stand. Technol., Vol. 109, No. 5, pp. 517- 524, 2004 https://doi.org/10.6028/jres.109.038
  4. Vikas, C. S. Pundir, "Biotechniques in Electrochemical Determination of Cholesterol: Reviews", Sensors & Transducers Journal, Vol. 83, No. 9, pp. 1504-1512, 2007
  5. G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti, G. Roncucci, "Photodynamic Therapy in the Treatment of Microbial Infections: Basic Principles and Perspective Applications", Lasers in Surgery and Medicine, Vol. 38, No. 5, pp. 468-481, 2006 https://doi.org/10.1002/lsm.20361
  6. G. Jori, S. B. Brown, "Photosensitised Inactivation of Microorganisms", Photochem Photobiol Sci., Vol. 3, pp. 403-405, 2004 https://doi.org/10.1039/b311904c
  7. T. Maisch, R. M. Szeimies, G. Jori, C. Abels, "Antibacterial Photodynamic Therapy in Dermatology", Photochem Photobiol Sci., Vol. 3, pp. 907-917, 2004 https://doi.org/10.1039/b407622b
  8. M. R. Hamblin, T. Hasan, "Photodynamic Therapy: A New Antimicrobial Approach to Infectious Diseases", Photochem Photobiol Sci., Vol. 3, pp. 436- 450, 2004 https://doi.org/10.1039/b311900a
  9. G. G. Miller, J. W. Lown, "Immunophotodynamic Therapy: Current Developments and Future Prospects", Drug Development Research, Vol. 42, No. 3-4, pp. 182-197, 1997 https://doi.org/10.1002/(SICI)1098-2299(199711/12)42:3/4<182::AID-DDR10>3.0.CO;2-B
  10. B. C. Schultes, S. Spaniol, S. Schmidt, W. Ertmer, H-J. Biersack, D. Krebs, "Photodynamic Iasertherapy with Antibody-coupled Phthalocyanine", Proc. Soc., Photo-optical Instrumentation Engineers, Vol. 2078, pp. 148-157, 1994
  11. Y. Alfredsson, "Electronic and Structural Properties of Thin Films of Phthalocyanines and Titanium Dioxide", Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 16, 2005
  12. J. Z. Sostaric, R. P. Pandian, A. Bratasz, P. Kuppusamy, "Encapsulation of a Highly Sensitive EPR Active Oxygen Probe into Sonochemically Prepared Microspheres", J. Phys. Chem. B, Vol. 111, No. 12, pp. 3298-3303, 2007 https://doi.org/10.1021/jp0682356
  13. G. Ilangovan, H. Li, J. L. Zweier, P. Kuppusamy, "Electrochemical Preparation and EPR Studies of Lithium Phthalocyanine. 3. Measurements of Oxygen Concentration in Tissues and Biochemical Reactions", J. Phys. Chem. B, Vol. 105, No. 22, pp. 5323- 5330, 2001 https://doi.org/10.1021/jp010130+
  14. M. Afeworki, N. R. Miller, N. Devasahayam, J. Cook, J. B. Mitchell, S. Subramanian, M. C. Krishna, "Preparation and EPR Studies of Lithium Phthalocyanine Radical as an Oxymetric Probe", Free Radical Biol. Med., Vol. 25, No. 1, pp. 72-78, 1998 https://doi.org/10.1016/S0891-5849(98)00039-2
  15. G. Ilangovan, J. L. Zweier, P. Kuppusamy, "Electrochemical Preparation and EPR Studies of Lithium Phthalocyanine. Part 2: Particle-Size-Dependent Line Broadening by Molecular Oxygen and Its Implications as an Oximetry Probe", J. Phys.Chem. B, Vol. 104, No. 40, 9404-9410, 2000 https://doi.org/10.1021/jp0013863
  16. F. Tang, C. Zhu, F. Gan, "Effect of Solvent Vapor on Optical Properties of Pr4VOPC in Polymethylmethacrylate", J. App. Phys., Vol. 78, No. 10, pp. 5884-5887, 1995 https://doi.org/10.1063/1.360589
  17. M. P. Somashekarappa, J. Keshavayya, S. Sampath, "Self-assembled Molecular Films of Tetraamino Metal(Co, Cu, Fe) Phthalocyanines on Gold and Silver. Elcectrochemical and Spectroscopic Characterization", Pure Appl. Chem., Vol. 74, No. 9, pp. 1609-1620, 2002 https://doi.org/10.1351/pac200274091609
  18. A. K. Mahapatro, S. Ghosh, "High Rectification in Metal-phthalocyanine Based Single Layer Devices", IEEE Transactions on Electron Devices, Vol. 48, No. 9, pp. 1911-1914, 2001 https://doi.org/10.1109/16.944176
  19. I. V. Aoki, I. C. Cuedes, S. L. A. Maranhao, "Copper Phthalocyanine as Corrosion Inhibitor for ASTM A606-4 Steel in 16% Hydrochloric Acid", J. of Applied Electrochemistry, Vol. 32, No. 8, pp. 915- 919, 2002 https://doi.org/10.1023/A:1020506432003
  20. K. Ohya, H. Kimbara, "Disc Brake Pad", US Pat. No. 4944373
  21. B. P. Maliwal, Z. Gryczynski, J. R. Lakowicz, "Longwavelength Long-Lifetime Luminophores", Anal. Chem., Vol. 73, No. 17, pp. 4277-4285, 2001 https://doi.org/10.1021/ac0101050
  22. M. Gouterman, J. Callis, L. Dalton, G. Khalil, Y. Mebarki, K. R. Cooper, M. Grenier, "Dual Luminophor Pressure-sensitive Paint: III. Application to Automotive Model Testing", Meas. Sci. Technol., Vol. 15, No. 10, pp. 1986-1994, 2004 https://doi.org/10.1088/0957-0233/15/10/007
  23. S. H. Im, G. E. Khalil, J. Callis, B. H. Ahn, M. Gouterman, Y. Xia, "Synthesis of polystyrene beads loaded with dual luminophors for self-referenced oxygen sensing", Talanta, Vol. 67, No. 3, pp. 492- 497, 2005 https://doi.org/10.1016/j.talanta.2005.06.046
  24. H. Shigetoshi, M. Sadao, M. Toshihiko, "Pressure Sensitive Recording Paper", US Pat. No. 4397483
  25. D. M. Walter, "Mercaptan Oxidation in a Liquid Hydrocarbon with a Metal Phthalocyanine Catalyst", US Pat. No. 4088569
  26. P. Novak, K. Muller, K. S. V. Santhanam, O. Haas, "Electrochemically Active Polymers for Rechargeable Batteries", Chem. Rev., Vol. 97, No. 1, pp. 207- 282, 1997 https://doi.org/10.1021/cr941181o
  27. J. Kajita, K. Tsuda, H. Ido, H. Nomura, S. Yamada, T. Goto, "LCD with Spacers having Particular Characteristics including Compression Stress", US Pat. No. 6275280
  28. S. Rajaputra, S. Vallurupalli, V. P. Singh, "Copper Phthalocyanine based Schottky Diode Solar Cells", J. of Materials Science: Materials in Electronics, Vol. 18, No. 11, pp. 1147-1150, 2007 https://doi.org/10.1007/s10854-007-9152-5
  29. H. Stab, M. Ploetner, O. Berger, H. Koenig, H. Graetz, W.-J. Fischer, "Environmental Data Card utilizing SAW Gas Sensors and PCMCIAinterface", IEEE Ultrasonics Symposium, pp. 481-484, 1999