• Title/Summary/Keyword: UV Irradiation

Search Result 1,355, Processing Time 0.038 seconds

Downregulation of bcl-xL Is Relevant to UV-induced Apoptosis in Fibroblasts

  • Nakagawa, Yuki;Okada, Seiji;Hatano, Masahiko;Ebara, Masaaki;Saisho, Hiromitsu;Tokuhisa, Takeshi
    • BMB Reports
    • /
    • v.35 no.5
    • /
    • pp.452-458
    • /
    • 2002
  • Exposure to ultraviolet light (UV) induces apoptosis in mammalian cells, The caspase group of proteases is required for the appotosis. This pathway is initiated by a release of cytochrome c from the mitochondria into the cytosol. Several Bcl-2 family proteins can regulate the release of cytochrome c by stabilizing the mitochondrial membrane. Here we show that expression of the endogenous bcl-xL was strongly downregulated in NIH3T3 cells within 2 h after UV-C irradiation, and that of bax was upregulated from 8 h after irradiation. Apoptosis was induced in more than 50% of the NIH3T3 cells 48 h after irradiation. Constitutive overexpression of bcl-xL in NIH3T3 cells protected the UV-induced apoptosis by preventing the loss of mitochondrial membrane potential and the activation of caspase 9. There results suggest that downregulation of Bcl-xL is relevant to UV-induced apoptosis of tibroblasts.

Surface Modification of Cellulose Acetate using $UV/O_3$ Irradiation

  • Lee, Hae-Sung;Jeong, Yong-Kyun;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.18 no.5 s.90
    • /
    • pp.35-41
    • /
    • 2006
  • Upon $UV/O_3$ irradiation cellulose acetate (CA) films showed modified surface properties such as increased hydrophilicity and surface roughness as well as increased dyeability to cationic dyes. UV treatment induced photoscission of acetyl groups in the main chain of CA resulting in decreased degree of substitution from 2.2 to 1.3. The slight decreases in reflectance and transmittance were caused by remarkably increased nano-scale surface roughness of the CA surface as much as 20-fold, which can destructively interfere with visible lights of wavelength lower thu 500nm. Water contact angle decreased from $54^{\circ}\;to\;14^{\circ}$ with increasing UV energy. Surface energy also increased slightly. The surface energy change was attributed to significant contribution of polar component rather than nonpolar component indicating surface photooxidation of CA film. The increased dyeability to cationic dyes in terms of both K/S and %E may be due to photochemically introduced anionic and dipolar dyeing sites on the film surfaces.

Aging and UV Irradiation Related Changes of Gene Expression in Primary Human Keratinocytes

  • Lee, Ok Joo;Lee, Sung-Young;Park, Jae-Bong;Lee, Jae-Yang;Kim, Jong-Il;Kim, Jaebong
    • Genomics & Informatics
    • /
    • v.3 no.2
    • /
    • pp.66-72
    • /
    • 2005
  • The epidermis is a physiological barrier to protect organisms against environment. During the aging process, skin tissues undergo various changes including morphological and functional changes. The transcriptional regulation of genes is part of cellular reaction of aging process. In order to examine the changes of gene expression during the aging process, we used the primary cell culture system of human keratinocytes. Since UV radiation is the most important environmental skin aggressor, causing skin cancer and other problems including premature skin aging, we examined the changes of gene expression in human keratinocytes after UV irradiation using oligonucleotide microarray containing over 10,000 genes. We also compared the gene expression patterns of the senescent and UV treated cells. Expression of the variety of genes related to transcription factors, cell cycle regulation, immune response was altered in human keratinocytes. Some of down-regulated genes are represented in both senescent and UV treated cells. The results may provide a new view of gene expression following UVB exposure and aging process in human keratinocytes.

Optical annealing of doped ZnS nanoparticles through UV irradiation (UV 조사에 의한 doped ZnS 나노입자의 annealing 효과)

  • Lee, Jun-Woo;Cho, Kyoung-Ah;Kim, Hyun-Suk;Kim, Jin-Hyoung;Park, Byung-Jun;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.24-27
    • /
    • 2004
  • ZnS nanoparticles were synthesized and doped with $Pr^{3+}\;and\;Mn^{2+}$. Photoluminescence(PL) peaks were observed at 430 nm for pure ZnS, 585 nm for $Mn^{2+}-doped$ ZnS, and at around 430, 460, 480, 495 nm for ZnS nanoparticles doped with $Pr^{3+}$, respectively. For co-doped sample, both characteristics of doping with each element were exhibited. Optical annealing through UV irradiation was carried out in the two atmospheres; air and vacuum. The increases of the luminescence intensity was more considerable in the air, which is attributed to the photo-induced oxidation. In the case of co-doped sample the change of the emission color was observed by UV annealing.

  • PDF

Effects of UV-A Blocking Contact Lenses on the Enzymes Denaturation Induced by UV-A Irradiation (UV-A로 유발된 효소 변성에 대한 콘택트렌즈의 차단 효과)

  • Park, Mijung;Lee, Keum Hee;Lee, Eun Kyung;Park, Sang Hee;Kim, So Ra;Lee, Heum Sook
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.4
    • /
    • pp.43-49
    • /
    • 2008
  • Purpose: The current study was conducted to evaluate the compatibility of UV-A blocking contact lens on eye protection with regular contact lens. Methods: The protective activity of regular contact lens (UV-A blocking: 20%) and UV-A blocking contact lens (UV-A blocking: 85%) on the denaturation of RNase A, catalase, and superoxide dismutase (SOD) induced UV-A irradiation were compared by acrylamide gel electrophoresis. The enzyme solutions were irradiated with UV-A for 1, 3, 6, 24 and 96 hours at the wavelength of 365 nm. Covering area with contact lenses were varied as 50%, 70% and 100% according to the calculation of blocking areas of anterior eye that could be covered with RGP lens, soft contact lens, and eye glasses, respectively. Results: Denaturations of RNase, catalase and SOD were exaggerated when they were exposed to UV-A for a longer period. The denaturation was effectively prevented by UV-A blocking contact lens compared to regular contact lens. The capability of UV-A blocking contact lens was considerably reduced when the covering area with contact lens decreased and exposure time to UV-A extended. Conclusion: Therefore, it would be suggested that wearing contact lens for a long time under sunlight is carefully considered since the activity of UV-A blocking contact lens against UV-A irradiation may not be enough to protect enzymes presented in eyes when exposure time to UV-A increased.

  • PDF

Degradation of PAHs in Aqueous Solution by UV Energy and Ultrasonic Irradiation (액상 PAHs의 자외선에너지와 초음파를 이용한 분해)

  • Kwon Sung-Hyun;Kim Jong-Hyang;Cho Dae-Chul
    • Journal of Environmental Science International
    • /
    • v.15 no.7
    • /
    • pp.669-676
    • /
    • 2006
  • PAHs are major pollutants that are widely distributed in soil and groundwater environment, so that may be regarded as carcinogens. We investigated the degradation kinetics of PAH in aqueous solution when low pressure UV energy and ultrasonic irradiation were applied. Phenanthrene and pyrene were used as model compounds. The degrees of degradation of these compounds with time were analyzed with a GC/MSD (SIM-mode). UV photolysis experiments showed that phenanthrene was reduced by 90 -67% at initial concentrations of 1 ppm to 8ppm whilst it decreased to 50% at 10 ppm. Under the same conditions pyrene was degraded up to about 75% at lower initial concentrations but the reduction efficiency dropped to a level of 34 to 29% at the higher concentrations above 8 ppm. The reaction orders for phenanthrene and pyrene were found to be zero-th and ca. -0.4th order, respectively, thus implying that the reported assumption of pseudo 1st order reaction for some PAHs would be no longer valid. PAH degradation was roughly proportional to the intensity of UV (number of lamps), exhibiting maximum 92.5% of the degradation efficiency. The solution pH was lowered to 4.4 from 6.4 during the experiments partially because the carbons decomposed by the energy reacted with oxygen radicals to produce carbon dioxides. Ultrasonic irradiation on phenanthrene solutions gave relatively poor results which matched to 50 to 70% of degradation efficiency even at 2 ppm of initial concentration. Phenanthrene was found to be degraded more efficiently than pyrene for the two energy sources. Ultrasound also followed the same reaction kinetics as UV energy on PAH degradation.

Effects of Electron Irradiation on the Properties of ZnO Thin Films

  • Kim, Seung-Hong;Kim, Sun-Kyung;Kim, So-Young;Kim, Daeil;Choi, Dae-Han;Lee, Byung-Hoon;Kim, Min-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.208-210
    • /
    • 2013
  • ZnO films were deposited on glass substrates by radio frequency (RF) magnetron sputtering and exposed to intense electron beam irradiation to investigate the effects of electron irradiation on the properties of the films. Although all of the films had ZnO (002) textured structure regardless of electron irradiation, the grain sizes of the films decreased with electron irradiation. Surface roughness also depended on electron irradiation. The surface roughness varied between 2.3 and 1.6 nm, depending on the irradiation energy. Based on photoluminescence (PL) characterization, the most intense UV emission was observed from ZnO films irradiated at 900 eV. Since the intensity of UV emission is dependent upon the stoichiometric of ZnO films, we conclude that 900 eV was the optimum electron irradiation energy to achieve the best stoichiometric of ZnO films in this study.

Effect of UV-C Irradiation on the Quality of Imported Dried Fish during Storage (UV-C 조사가 수입 건어포류의 저장 중 품질에 미치는 영향)

  • Kim, Ju-Yeon;Chun, Ho-Hyun;Song, Kyung-Bin
    • Food Science and Preservation
    • /
    • v.15 no.6
    • /
    • pp.922-926
    • /
    • 2008
  • The effect of UV-C irradiation on microbial growth and the quality of imported dried filefish and octopus during storage was examined. Samples of imported dried filefish and octopus were irradiated at 0, 5, 10 and $20\;kJ/m^2$ and stored for 3 months at $20^{\circ}C$ or for 6 days at $4^{\circ}C$. Exposure times of 5 min 33 sec, 11 min 6 sec, and 22 min 12 sec were used. UV-C treatment of the imported dried filefish and octopus decreased the populations of aerobic bacteria, yeasts and molds in proportion to radiation dose. Compared to the control, total aerobic bacteria, and yeast and mold populations were significantly lower (1-2 log CFU/g) with UV-C treatment of $20\;kJ/m^2$. UV-C irradiation caused negligible changes in the Hunter color L, a and b values. These results indicate that UV-C irradiation could be useful in inhibiting microbial growth on imported dried fish without impairing quality during storage.

Ultraviolet (UV)-B Irradiation Increased Vitamin D2 Contents in the Fruit Bodies of Pleurotus eryngii var. ferulae (자외선(UV)-B 조사에 의한 아위느타리버섯(Pleurotus eryngii var. ferulae) 자실체의 비타민 D2 함량 증가)

  • Rho, Jae-Young;Park, Sang-Don
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.191-194
    • /
    • 2013
  • The fresh fruit bodies of Pleurotus eryngii var. ferulae was irradiated with ultraviolet (UV)-B (280-320 nm) in order to increase vitamin $D_2$ contents, which was assayed using HPLC (Waters 1525, USA). The vitamin $D_2$ contents were $3.5{\mu}g/g$ after 3 min UV-B irradiation ($21.6KJ/m^2$) and $6.02{\mu}g/g$ after 5 min UV-B irradiation ($36KJ/m^2$), respectively, which showed the significant increase considering the vitamin $D_2$ content ($0.01{\mu}g/g$) before UV-B irradiation. This increasing effect was confirmed also for other edible mushrooms; Pleurotus eryngii, from $0.09{\mu}g/g$ to $2.75{\mu}g/g$ (3 min) and $5.21{\mu}g/g$ (5 min); Lentinus edodes, from $0.021{\mu}g/g$ to $3.02{\mu}g/g$ (3 min) and $3.78{\mu}g/g$ (5 min); Pleurotus ostreatus, from $0.19{\mu}g/g$ to $9.63{\mu}g/g$ (3 min) and $11.6{\mu}g/g$ (5 min). Although the original content of vitamin $D_2$ was the highest in P. ostreatus, the extent of increase by UV irradiation was remarkably high in P. eryngii var. ferulae.

Effects of combined acetic acid and UV-C irradiation treatment on the microbial growth and the quality of sedum during its storage (Acetic acid와 UV-C 병합처리가 돌나물의 저장 중 미생물 성장과 품질에 미치는 영향)

  • Seong, Ki Hyun;Kang, Ji Hoon;Song, Kyung Bin
    • Food Science and Preservation
    • /
    • v.21 no.4
    • /
    • pp.581-586
    • /
    • 2014
  • With the current consumer trend toward health and wellbeing, the demand for consumption of fresh cut vegetables has been increasing. As a popular vegetable with functional components, sedum (Sedum sarmentosum) is widely used in Korea as a side dish that needs no cooking. In this study, to provide a hurdle technology for postharvest sedum, the effects of combined treatment of 1% acetic acid for washing and $10kJ/m^2$ UV-C irradiation on the microbial growth and quality of sedum were examined. After the treatment, the sedum samples were stored at $10^{\circ}C$ for six days, and the results of their microbial analysis as well as their color, vitamin C content, and antioxidant activity were analyzed. The combined treatment with acetic acid and UV-C irradiation reduced the initial populations of the total aerobic bacteria and the yeast and molds in the sedum by 3.28 and 4.22 log CFU/g, respectively, compared to those in the control. The Hunter L, a, and b values of the sedum did not significantly differ across the treatments. In addition, the vitamin C content and the antioxidant activity decreased significantly during the storage, regardless of the treatment. These results suggest that the combined treatment with 1% acetic acid and $10kJ/m^2$ UV-C irradiation can be useful as a hurdle technology for retaining the microbiological safety and quality of sedum during its storage.