• Title/Summary/Keyword: UV Imprint

Search Result 56, Processing Time 0.029 seconds

Fabrications of nano-sized patterns using bi-layer UV Nano imprint Lithography (UV NIL을 이용한 Lift-off가 용이한 패턴 형성 연구)

  • Yang K.Y.;Hong S.H.;Lee H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1489-1492
    • /
    • 2005
  • Compared to other nano-patterning techniques, Nano imprint Lithography (NIL) has some advantages of high throughput and low process cost. To imprint low temperature and pressure, UV Nano imprint Lithography, which using the monomer based UV curable resin is suggested. Because fabrication of high fidelity pattern on topographical substrate is difficult, bi-layer Nano imprint lithography, which are consist of easily removable under-layer and imprinted pattern, is being used. If residual layer is not remained after imprinting, and under-layer is removed by oxygen RIE etching, we might be able to fabricate the bi-layer pattern for easy lift-off process.

  • PDF

Fabrication of Fluorescent Oxygen Sensor Probe Module Based on Planner Lightwave Circuits using UV Imprint Lithography (UV 임프린트 공정을 이용한 평면 광회로 기반 형광 산소 센서 프로브 모듈 제작)

  • Ahn, Ki Do;Oh, Seung hun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.37-41
    • /
    • 2018
  • This paper presents the integrated fluorescent oxygen sensor probe module based on planner lightwave circuits using UV imprint lithography. The oxygen sensor system is consisted of the optical source part, optical detector part and optical sensing probe part to be composed of the planner lightwave circuit and oxygen sensitive thin film layer. Firstly, we optimally designed the planner lightwave circuit with asymmetric $1{\times}2$ beam splitter using beam propagation method. Then, we fabricated the planner lightwave circuits using UV imprint lithography process. This planner lightwave circuits transmitted the optical power with 76% efficiency and the fluorescence signal with 70% efficiency. The oxygen sensitive thin film layer is coated on the end face of planner lightwave circuit. The oxygen sensor system using this sensor probe module with planner lightwave circuit could measure the concentration with 0.3% resolution from 0% to 20% gas range. This optical oxygen sensor probe module make it possible to compact, simple and cheap measurement system.

Fabrication of Monolithic Spectrometer Module Based on Planar Optical Waveguide Platform using UV Imprint Lithography (UV 임프린트 공정을 이용한 평판형 광도파로 기반의 집적형 분광 모듈 제작)

  • Oh, Seung hun;Jeong, Myung yung;Kim, Hwan gi;Choi, Hyun young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.73-77
    • /
    • 2015
  • This paper presents integrated polymeric spectrometer module which offers compact size, easily-fabricated structure and low cost. The proposed spectrometer module includes the nano diffraction grating with non-uniform pitch and planar optical waveguide with concave mirror to be fabricated by UV imprint lithography. To increase the reflection efficiency, we designed the nano diffraction grating with triangular profiles. The polymeric planar spectrometer includes a spectral bandwidth of 700 nm, resolution of 10 nm and precision below 5 nm. This polymeric planar spectrometer is well-suited for sensor system.

Fabrication and Characterization of Film Type Light Guide Plates by UV Imprint Lithography (UV 임프린팅법에 의한 필름형 광도광판의 제조 및 특성 연구)

  • Kim, Hyeong-Gwan;Kim, So-Won;Lee, Hee-Chul
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.178-185
    • /
    • 2016
  • In this study, we have fabricated light guide plates (LGPs) in thin film form for edge type back light unit (BLU) by using UV imprint lithography. In the LGPs, the pattern of functional resins on PC and PMMA substrates were successfully transferred from original master mold through PVC stamp. Optimized pattern arrays with slowly-sloped density were designed to obtain high brightness and uniformity. We could obtain a relatively improved brightness of $950cd/m^2$ and a uniformity of 87.3% by using the NP-S20 functional resins at an input power of 1.3 W because NP-S20 resin could show high formability after UV hardening process. The LGP prepared on polymethylmethacrylate (PMMA) substrate exhibited higher brightness than that on polycarbonate (PC) substrate because PMMA has lower refractive index resulting in more refraction toward the vertical direction.