• Title/Summary/Keyword: UV A-LED

Search Result 241, Processing Time 0.027 seconds

Thermal and Mechanical Properties of a N2 Doped Porous 3C-SiC Thin Film (질소가 도핑된 다공질 3C-SiC 박막의 열적, 기계적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.651-654
    • /
    • 2010
  • This paper describes the thermal and mechanical properties of doped thin film 3C-SiC and porous 3C-SiC. In this work, the in-situ doped thin film 3C-SiC was deposited by using atmospheric pressure chemical vapor deposition (APCVD) method at $120^{\circ}C$ using single-precursor hexamethyildisilane: $Si_2(CH_3)_6$ (HMDS) as Si and C precursors. 0~40 sccm $N_2$ gas was used as doping source. After growing of doped thin film 3C-SiC, porous structure was achieved by anodization process with 380 nm UV-LED. Anodization time and current density were fixed at 60 sec and 7.1 mA/$cm^2$, respectively. The thermal and mechanical properties of the $N_2$ doped porous 3C-SiC was measured by temperature coefficient of resistance (TCR) and nano-indentation, respectively. In the case of 0 sccm, the variations of TCR of thin film and porous 3C-SiC are similar, but TCR conversely changed with increase of $N_2$ flow rate. Maximum young's modulus and hardness of porous 3C-SiC films were measured to be 276 GPa and 32 Gpa at 0 sccm $N_2$, respectively.

Intra- and Extra-cellular Mechanisms of Saccharomyces cerevisiae Inactivation by High Voltage Pulsed Electric Fields Treatment (고전압 펄스 전기장에 의한 Saccharomyces cerevisiae의 세포내·외적 사멸 기작 연구)

  • Lee, Sang-Jae;Shin, Jung-Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.87-94
    • /
    • 2015
  • High voltage pulsed electric fields (PEF) treatment is one of the more promising nonthermal technologies to fully or partially replace thermal processing. The objective of this research was to investigate the microbial inactivation mechanisms of PEF treatment in terms of intra- and extracellular changes in the cells. Saccharomyces cerevisae cells treated with PEF showed cellular membrane damage. This resulted in the leakage of UV-absorbing materials and intracelluar ions, which increased with increasing treatment time and electric fields strength. This indicates that PEF treatment causes cell death via membrane damage and physical rupture of cell walls. We further confirmed this by Phloxine B staining, a dye that accumulates in dead cells. Using scanning and transmission electron microscopy, we observed morphological changes as well as disrupted cytoplasmic membranes in PEF treated S. cerevisae cells. In addition, PEF treatment led to damaged chromosomal DNA in S. cerevisiae.

The Effects of Edible Coating and Hurdle-Technology on Quality Maintenance and Shelf-Life Extension of Seafood (식용 코팅 및 허들기술이 수산물의 품질 유지와 저장성 연장에 미치는 영향)

  • Baek, Ji Hye;Lee, So-Young;Oh, Se-Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.3
    • /
    • pp.205-212
    • /
    • 2020
  • Foodborne diseases occur frequently and have various being related to the intake of contaminated foods. Seafood products are susceptible to contamination due to higher water content and microorganisms, which combine to give them a short shelf-life. Various approaches have been applied to overcome this problem. Edible coatings that are also biodegradable and biocompatible have been discussed as one of the applicable solutions. These coatings can actually help to maintain seafood quality by inhibiting the growth of microorganisms and delaying the loss of moisture. This paper presents the effects of various natural bio-polymers, antimicrobial substances and physical sterilization techniques such as gamma irradiation, ultraviolet (UV) sterilization, and light-emitting diode (LED) sterilization on seafood coatings.

Antioxidant Constituents from the Leaves of Cedrela sinensis A. Juss

  • Lee, Ik-Soo;Wei, Chun-Hua;Thoung, Phuong Thien;Song, Kyung-Sik;Seong, Yeon-Hee;Bae, Ki-Hwan
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.5
    • /
    • pp.267-272
    • /
    • 2006
  • Phytochemical study on the EtOAc fraction from the MeOH extract of the leaves of Cedrela sinensis led to the isolation of five known phenolic compounds (1-5), whose structures were identified as (+)-catechin (1), $kaempferol-3-0-{\alpha}- L-rhamnopyranoside$ (2), quercetin (3), $quercetin-3-O-{\alpha}-L-rhamnopyranoside$ (4), and $quercetin-3-O-{\beta}-D-glucopyranoside$ (5), respectively, by comparing their spectral $(uv,\;JR,\;IH\;and\;^{13}C-NMR,\;and\;ESI-MS)$ and physicochemical data with those reported in the literature. Among the isolated compounds (1-5), compounds 1 and 3-5 exhibited significant DPPH radical scavenging effects with $IC{_50}$ values ranging from $21.3{\pm}1.4\;to\;38.1{\pm}3.2 {\mu}M$ as well as superoxide anion radical scavenging effects with $IC{_50}$ values ranging from $9.4{\pm}0.7\;to\;21.2{\pm}3.6 {\mu}M$. Furthermore, compounds 1 and 3-5 also exhibited considerable inhibitory effects on LDL peroxidation induced by either $CU^{2+}$ or AAPH with $IC{_50}$ values ranging from $1.4{\pm}0.4\;to\;11.9{\pm}1.4\;{\mu}M$. These results indicated that flavonoids are the major constituents of C. sinensis and considered to be antioxidant principles of this plant.

Photocatalytic Efficiency and Bandgap Property of the CdS Deposited TiO2 Photocatalysts (TiO2/CdS 복합광촉매의 밴드갭 에너지 특성과 광촉매 효율)

  • Lee, Jong-Ho;Heo, Sujeong;Youn, Jeong-Il;Kim, Young-Jig;Suh, Su-Jeong;Oh, Han-Jun
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.790-797
    • /
    • 2019
  • To improve photocatalytic performance, CdS nanoparticle deposited TiO2 nanotubular photocatalysts are synthesized. The TiO2 nanotube is fabricated by electrochemical anodization at a constant voltage of 60 V, and annealed at 500 for crystallization. The CdS nanoparticles on TiO2 nanotubes are synthesized by successive ionic layer adsorption and reaction method. The surface characteristics and photocurrent responses of TNT/CdS photocatalysts are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-Vis spectrometer and LED light source installed potentiostat. The bandgaps of the CdS deposited TiO2 photocatalysts are gradually narrowed with increasing of amounts of deposited CdS nanoparticles, which enhances visible light absorption ability of composite photocatalysts. Enhanced photoelectrochemical performance is observed in the nanocomposite TiO2 photocatalyst. However, the maximum photocurrent response and dye degradation efficiency are observed for TNT/CdS30 photocatalyst. The excellent photocatalytic performance of TNT/CdS30 catalyst can be ascribed to the synergistic effects of its better absorption ability of visible light region and efficient charge transport process.

Synthesis and Luminescence Properties of Sr/SmSi5N8:Eu2+ Phosphor for White Light-Emitting-Diode

  • Luong, Van Duong;Lee, Hong-Ro
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.192-197
    • /
    • 2014
  • Red-emitting nitride phosphors recently attracted considerable attention because of their high thermal stability and high color rendering index properties. For excellent phosphor of white light-emitting-diode, ternary nitride phosphor of $Sr/SmSi_5N_8:Eu^{2+}$ with different $Eu^{2+}$ ion concentration were synthesized by solid state reaction method. In this work, red-emitting nitride $Sr/SmSi_5N_8:Eu^{2+}$ phosphor was successfully synthesized by using multi-step high frequency induction heat treatment. The effects of molar ratio of component and experimental conditions on luminescence property of prepared phosphors have been investigated. The structure and luminescence properties of prepared $Sr/SmSi_5N_8:Eu^{2+}$ phosphors were investigated by XRD and photoluminescence spectroscopy. The excitation spectra of $Sr/SmSi_5N_8:Eu^{2+}$ phosphors indicated broad excitation wavelength range of 300 - 550 nm, namely from UV to visible area with distinct enhanced emission peaks. With an increase of $Eu^{2+}$ ion concentration, the peak position of emission in spectra was red-shifted from 613 to 671 nm. After via multi-step heat treatment, prepared phosphor showed excellent luminescence properties, such as high emission intensity and low thermal quenching, better than commercial phosphor of $Y_3Al_5O_{12}:Ce^{3+}$. Using $Eu_2O_3$ as a raw material for $Eu^{2+}$ dopant with nitrogen gas flowing instead of using commercial EuN chemical for $Sr/SmSi_5N_8:Eu^{2+}$ synthesis is one of characteristic of this work.

Effects of Temperature and Additives on the Thermal Stability of Glucoamylase from Aspergillus niger

  • Liu, Yang;Meng, Zhaoli;Shi, Ruilin;Zhan, Le;Hu, Wei;Xiang, Hongyu;Xie, Qiuhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.33-43
    • /
    • 2015
  • GAM-1 and GAM-2, two themostable glucoamylases from Aspergillus niger B-30, possess different molecular masses, glycosylation, and thermal stability. In the present study, the effects of additives on the thermal inactivation of GAM-1 and GAM-2 were investigated. The half-lives of GAM-1 and GAM-2 at 70℃ were 45 and 216 min, respectively. Data obtained from fluorescence spectroscopy, circular dichroism spectroscopy, UV absorption spectroscopy, and dynamic light scattering demonstrated that during the thermal inactivation progress, combined with the loss of the helical structure and a majority of the tertiary structure, tryptophan residues were partially exposed and further led to glucoamylases aggregating. The thermal stability of GAM-1 and GAM-2 was largely improved in the presence of sorbitol and trehalose. Results from spectroscopy and Native-PAGE confirmed that sorbitol and trehalose maintained the native state of glucoamylases and prevented their thermal aggregation. The loss of hydrophobic bonding and helical structure was responsible for the decrease of glucoamylase activity. Additionally, sorbitol and trehalose significantly increased the substrate affinity and catalytic efficiency of the two glucoamylases. Our results display an insight into the thermal inactivation of glucoamylases and provide an important base for industrial applications of the thermally stable glucoamylases.

Inhibitory Effects of Flavonoids from Lespedeza cuneata on Aldose Reductase

  • Quilantang, Norman;Lee, Ju Sung;Yun, Young-Sok;Limbo, Carlo;Yoo, Sang Woo;Lee, Seong;Lee, Sanghyun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.62-62
    • /
    • 2018
  • Inhibition of aldose reductase (AR) has been shown to prevent the onset and progression of many diabetic complications wherein several AR inhibitors were isolated from plants abundant in polyphenolic compounds. Lespedeza cuneata (Fabaceae), a perennial plant indigenous in East Asian countries, is shown to be abundant in these polyphenolic substances such as flavonoids and tannins. However, there are no studies to date regarding its effects on AR. In this study, the inhibitory activity of the methanol extract and stepwise polarity fractions of Lespedeza cuneata on AR was investigated. The bioactive compounds purified from L. cuneata by repeated column chromatography were also tested for AR inhibition. Results show that the ethyl acetate and n-butanol fractions of L. cuneata exhibited potent inhibition against AR with $IC_{50}$ values of 0.57 and $0.49{\mu}g/mL$, respectively. Further analysis led to the isolation of acacetin (1), afzelin (2), astragalin (3), kaempferol (4), and scutellarein 7-O-glucoside (5). The AR inhibitory effects these five compounds were also determined in which compounds 2, 3, and 5 showed potent AR inhibitory effects with $IC_{50}$ values of 2.20, 1.91, and $12.87{\mu}M$, respectively. Quantitative analysis of astragalin (3) by HPLC-UV was also performed in the leaves and roots of L. cuneata (0.626 and 0.671 mg/g, respectively). This study reports that the flavonoids isolated from L. cuneata show promising AR inhibitory activities which can be further developed as natural therapies for treating and managing diabetic complications.

  • PDF

A study on the dependance of crucible dimension on AlN single crystal growth (AlN 단결정 성장에 관한 도가니 형태의 의존성에 관한 연구)

  • Yin, Gyong-Phil;Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • For the special usage, the effort of developing AlN single crystals has been very hot in the world. The AlN-base UV LEDs are used on the field of sterilization, purification, curing and analyzing, which can advance human's living and medical processes etc.. AlN single crystals were grown by the PVT (Physical vapor transport) method. On the growing process, carbon crucibles with three different types such as normal size, taller than normal and wider than normal were used for comparison. The processing temperature was in the range of $1900{\sim}2100^{\circ}C$ and ambient pressure was 200~1 Torr. When the taller crucible was used, the sublimation mass was greater than normal dimension one but the best condition of growth changes widely. However the wider one gave much sublimation mass and growing condition was more stable than normal dimension. On limited growing furnace system, the changes of crucible dimension of PVT method provide the change of best condition for growth rate, as-grown crystal quality and growth condition stability.

The Effect of Photomodulation in Human Dermal Fibroblasts (피부 섬유아세포에서 광자극의 효과)

  • Kim, Mi Na;Kwak, Taek Jong;Kang, Nae Gyu;Lee, Sang Hwa;Park, Sun Gyoo;Lee, Cheon Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.325-331
    • /
    • 2015
  • Skin is exposed to sunlight or artificial indoor light on a daily. The reached solar light on the earth surface consist of 50% visible light and 45% infrared (IR) except for ultra violet (UV). The negative effects of UV including UVB and UVA have been steadily investigated within the last decades. However, little is known about the effects of visible or IR light. In this study, we irradiated human dermal fibroblasts using light emitting diode (LED) to investigate the optimal parameter for enhancing cell growth and collagen synthesis. We found that red of 630 nm and green of 520 nm enhance the cell proliferation, but irradiation with purple and blue light exerts toxic effects. To examine the response of irradiation time and light intensity on the fibroblasts, cells were exposed to red or green light with intensities from 0.05 to $0.75mW/cm^2$. Procollagen secretion was increased of 1.4 fold by 10 min irradiation, while 30 min treatment decreased the collagen synthesis of dermal fibroblasts. Treatment with red of $0.3mW/cm^2$ and green of 0.15 and $0.3mW/cm^2$ resulted in enhancement of collagen mRNA. Lastly, we investigated the combinatorial effect of red and green light on dermal fibroblasts. The sequential irradiation of red and green light is an efficient way for the purpose of the increase in the number of fibroblasts than single light treatment. On the other hand, the exposure of red light alone was more effective method for enhancing of collagen secretion. Our study showed that specific light parameters accelerated cell proliferation, gene expression and collagen secretion on human dermal fibroblasts. In conclusion, we demonstrate that light exposure with specific parameter has beneficial effects on the function of dermal fibroblasts, and suggests the possibility of its cosmetically and clinical application.