• Title/Summary/Keyword: UTM-K

Search Result 314, Processing Time 0.026 seconds

Analysis of Map Projection Distortion for UTM-K (UTM-K 도입에 따른 지도 투영왜곡 분석)

  • Song, Yeong-Sun;Heo, Joon;Sohn, Hong-Gyoo;Kim, Woo-Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.4
    • /
    • pp.313-318
    • /
    • 2006
  • Recently, the single plane coordinate system which has one origin is required to create and manage continuous geographic framework data of entire Korean peninsula. For this, UTM-K (Univercial Transverse Mercator-K) was established in 2005. In this paper, the level of distortion was analyzed with respect to the central meridian and scale factor of UTM-K. The latitude and longitude values of the center point of 1/25000 scale digital maps were used for calculating the scale factor which was created by projection and the scale factor was used for index that presents the degree of distortion. As a result, accumulated distortion of scale factor by UTM-K map projection showed about $23.744{\times}10^{-2}$. On the other hand, the minimum distortion which was about $5.1435{\times}10^{-2}$ occurred when central meridian is $127^{\circ}\;42'$ and scale factor of central meridian was 0.99994 respectively.

The Design of Levitation Magnet for UTM(Urban Transit Maglev)-02 using Maxwell-3D FEM (Maxwell-3D FEM을 이용한 UTM(Urban Transit Maglev)-02 의 부상용 전자석 설계)

  • Kim, Bong-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.699-701
    • /
    • 2000
  • It leaves much room for improvement that UTM-01 is of practical use. Therefor we will design of UTM-02 system. The design of new magnet is based on light weight for bogie system. We used Maxwell-3D FEM for design of new magnet. The new magnet for UTM-02 that was reduced weight of magnet. 22kg, then it was increased ratio lift to weight is 9.87.

  • PDF

A Study on the Optimal Combination of Central Meridian and Scale Factor of UTM-K for Application of Korea Peninsula (한반도 전역에 적용할 최적의 UTM-K 투영 중앙자오선 및 축척계수 결정에 관한 연구)

  • Lee, Hee-Bum;Heo, Joon;Kim, Woo-Sun;Lee, Jung-Bin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.1
    • /
    • pp.39-45
    • /
    • 2007
  • In this paper, a research has been conducted to find out the optimal combination of central meridian and scale factor of UTM-K to apply for the whole area of Korean peninsula. For this research, various combinations of central meridian and stale factor are set up and the cumulated level or distortion for each combination has been computed and compared to each other. In the case of using the central meridian and scale factor defined in the present UTM-K, the level of distortion shows about $47.0837{\times}10^{-2}$. On the other hand, the minimum distortion which is about $21.0495{\times}10^{-2}$ can be obtained when the $127^{\circ}26'$ for the central meridian and 0.99991 for scale factor are used for computation. Consequently, we can conclude that later result is the optimum combination of central meridian and scale factor for the Korean peninsula.

Vibration of antisymmetric angle-ply laminated plates under higher order shear theory

  • Javed, Saira;Viswanathan, K.K.;Aziz, Z.A.;Karthik, K.;Lee, J.H.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1281-1299
    • /
    • 2016
  • This paper deals with the analysis of vibration of antisymmetric angle-ply plates using spline method for higher order shear theory. Free vibration of laminated plates is addressed to show the capability of the present method in the vicinity of higher order shear deformation theory and simply supported edges of plates. The coupled differential equations are obtained in terms displacement and rotational functions. These displacement and rotational functions are approximated using cubic and quantic spline. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The antisymmetric angle-ply fiber orientation are taken as design variables. Numerical results enable us to examine the frequencies for various geometric and material parameters and accuracy and effectiveness of the proposed method is also verified by comparative study.

Performance of partial strength connection connected by thick plate between column flanges

  • Tahir, Mahmood M.;Juki, Irwan;Ishak, Mohd Y.;Mohammad, Shahrin;Awang, Abdullah Z.;Plank, Roger
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.215-228
    • /
    • 2014
  • Traditional beam connections to the minor axis of a column have relatively low strength and stiffness. A modified detail, using a plate welded between the toes of the column flange - referred to as a toe plate connection - is examined in this paper. The results of an experimental investigation for both flush and extended end-plate connections connected to a 25 mm thick end-plate are presented. The tests are complemented by finite element modelling which compares very well with the test observations. The results show a significant increase in both moment resistance and initial stiffness for this connection detail compared with connections made directly to the column web. This offers the prospect of more optimal solutions taking advantage of partial strength frame design for the minor axis as well as major axis.

Higher Order Coordinates Conversion for UTM Projection (UTM 투영에 의한 고차 좌표변환)

  • Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.3
    • /
    • pp.277-290
    • /
    • 2008
  • In order to apply UTM coordinates conversion in zones larger than $14^{\circ}$ wide, a new conversion formula, based on the 12th expansion of Taylor series, is derived which is shown to be an extension of Thomas' formula(1952). Some examples of coordinate conversion between WGS84 and UTM are presented and convergences of computational results are also tested according to the order of formula. The present conversion formula can be used to make rectangular coordinate grid systems for numerical models to compute long wave propagation such as tide or tsunami around Korea.

Vibration analysis of a shear deformed anti-symmetric angle-ply conical shells with varying sinusoidal thickness

  • Javed, Saira;Viswanathan, K.K.;Aziz, Z.A.;Lee, J.H.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1001-1020
    • /
    • 2016
  • The study is to investigate the free vibration of antisymmetric angle-ply conical shells having non-uniform sinusoidal thickness variation. The arbitrarily varying thickness is considered in the axial direction of the shell. The vibrational behavior of shear deformable conical shells is analyzed for three different support conditions. The coupled differential equations in terms displacement and rotational functions are obtained. These displacement and rotational functions are invariantly approximated using cubic spline. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The vibration characteristic of the shells is examined for cone angle, aspect ratio, sinusoidal thickness variation, layer number, stacking sequence, and boundary conditions.

Free vibration analysis of composite cylindrical shells with non-uniform thickness walls

  • Javed, Saira;Viswanathan, K.K.;Aziz, Z.A.
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1087-1102
    • /
    • 2016
  • The paper proposes to characterize the free vibration behaviour of non-uniform cylindrical shells using spline approximation under first order shear deformation theory. The system of coupled differential equations in terms of displacement and rotational functions are obtained. These functions are approximated by cubic splines. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector which are spline coefficients. Four and two layered cylindrical shells consisting of two different lamination materials and plies comprising of same as well as different materials under two different boundary conditions are analyzed. The effect of length parameter, circumferential node number, material properties, ply orientation, number of lay ups, and coefficients of thickness variations on the frequency parameter is investigated.

Standardization of composite connections for trapezoid web profiled steel sections

  • Saggaff, A.;Tahir, M.M.;Sulaiman, A.;Ngian, S.P.;Mirza, J.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.765-784
    • /
    • 2015
  • Connections are usually designed either as pinned usually associated with simple construction or rigid normally is associated with continuous construction. However, the actual behaviour falls in between these two extreme cases. The use of partial strength or semi-rigid connections has been encouraged by Euro-code 3 and studies on semi-continuous construction have shown substantial savings in steel weight of the overall construction. Composite connections are proposed in this paper as partial or full strength connections. Standardized connection tables are developed based on checking on all possible failure modes as suggested by "component method" for beam-to-column composite connection on major axis. Four experimental tests were carried out to validate the proposed standardised connection table. The test results showed good agreement between experimental and theoretical values with the ratio in the range between 1.06 to 1.50. All tested specimens of the composite connections showed ductile type of failure with the formation of cracks occurred on concrete slab at maximum load. No failure occurred on the Trapezoidal Web Profiled Steel Section as beam and on the British Section as column.

Seismic assessment of base-isolated nuclear power plants

  • Farmanbordar, Babak;Adnan, Azlan Bin;Tahir, Mahmood Md.;Faridmehr, Iman
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.211-223
    • /
    • 2017
  • This research presented a numerical and experimental study on the seismic performance of first-generation base-isolated and fixed-base nuclear power plants (NPP). Three types of the base isolation system were applied to rehabilitate the first-generation nuclear power plants: frictional pendulum (FP), high-damping rubber (HDR) and lead-rubber (LR) base isolation. Also, an Excel program was proposed for the design of the abovementioned base isolators in accordance with UBC 97 and the Japan Society of Base Isolation Regulation. The seismic assessment was performed using the pushover and nonlinear time history analysis methods in accordance with the FEMA 356 regulation. To validate the adequacy of the proposed design procedure, two small-scale NPPs were constructed at Universiti Teknologi Malaysia's structural laboratory and subjected to a pushover test for two different base conditions, fixed and HDR-isolated base. The results showed that base-isolated structures achieved adequate seismic performance compared with the fixed-base one, and all three isolators led to a significant reduction in the containment's tension, overturning moment and base shear.