# UTM 투영에 의한 고차 좌표변환 Higher Order Coordinates Conversion for UTM Projection

서승남\*

Seung-Nam Seo\*

**요 지**: 경도 14° 범위보다 넓은 구역에 대한 UTM 좌표변환을 위하여 12차 Taylor 전개에 의한 새로운 변환 식을 유도하였고 이는 Thomas(1952)의 식을 확장한 것임을 보였다. WGS84와 UTM 좌표의 상호변환에 대한 계 산 결과를 나타내었고 차수에 따른 수렴의 정도도 분석하였다. 본 변환식은 우리나라 주변의 조석 또는 지진해 일과 같은 장주기 파랑의 전파를 위한 수치모형의 직교좌표 격자구성에 사용될 수 있다.

핵심용어 : WGS84, UTM, 측지좌표계 변환, 수렴판정, 격자수심

**Abstract :** In order to apply UTM coordinates conversion in zones larger than 14° wide, a new conversion formula, based on the 12th expansion of Taylor series, is derived which is shown to be an extension of Thomas' formula(1952). Some examples of coordinate conversion between WGS84 and UTM are presented and convergences of computational results are also tested according to the order of formula. The present conversion formula can be used to make rectangular coordinate grid systems for numerical models to compute long wave propagation such as tide or tsunami around Korea.

Keywords : WGS84, UTM, coordinate transformation, convergence test, gridded bathymetric data

## 1.서 론

우리나라의 지형도와 해도는 횡메카토르 투영법에 따 라 제작되며 지리학적 경위도와 평면직각 좌표간의 상호 변환은 TM 또는 UTM 투영에 따른 계산식을 이용한다 (국토지리정보원, 2008; 국립해양조사원, 2008). TM 투영 에 의한 변환은 UTM 변환과 동일하나 TM 좌표계는 보 다 작은 구역을 대상으로 하기 때문에 축척계수와 원점 의 기준이 다르다. 지형도의 경우 1:100만 이하의 축척을 갖는 도엽은 TM 투영에 의한 평면 직각좌표계로 표현되 고 수치해도인 경우에는 외견상 WGS84의 경위도로 표 현되나 수심과 등수심선 등의 실제 정보는 UTM 좌표로 표현된다.

UTM 투영은 설정된 정확도를 만족하기 위하여 경도 6° 마다 구획을 나누어 지도를 제작하나 동경 122°-19'-54" 에서 133°-59'-50" 범위의 지역을 포함하는 "대한민국 전 도"와 같은 소축척 해도의 경우에는 설정된 기준구획의 경 도범위보다 크다. 이와 같은 소축척 해도의 경우에서는 UTM 투영에 내재된 특성상 투영 기준경도로부터 멀어질 수록 거리의 오차가 커진다. 이러한 점에 의해 기존의 UTM 좌표 변환식은 뒤에 기술한 바와 같이 8차까지만 유 도되었고 실제 계산에는 이 가운데 일부를 무시한 변환 식(DMA, 1989)이 사용된다.

황해 전체에 대한 조석, 동해 전체에 대한 지진해일 또 는 폭풍해일 수치계산에는 경도 14° 정도의 구역에 대한 수심자료가 필요하게 된다. 위의 수치계산에 구면좌표계 (spherical coordinates)를 사용한 예로는 최·홍(2005)은 황해와 동중국해의 조석 계산과 조(1996)는 대양을 횡단 하는 지진해일 계산 등을 들 수 있다. 반면에 윤 등(2002) 은 동해의 지진해일 전파를 모의하기 위해 직교좌표계에 의한 지배방정식을 사용하였으나 격자망은 구면좌표계를 변환하여 구성하였다. 한편 서(1999)는 황해와 동중국해 의 조석계산에 구면좌표계와 UTM 좌표계를 각각 사용하 였으며 두 좌표계로부터 구한 결과는 거의 동일함을 밝

\*한국해양연구원 연안개발연구본부 책임연구원(Coastal Engineering Research Department, KORDI, Ansan PO. Box 29, Seoul 425-600, Korea. snseo@kordi.re.kr)

혔고 또한 수치실험 결과는 해저마찰계수에 민감함을 지 적하였다. 그리고 연안에서의 해일고를 산출하기 위한 폭 풍해일 수치모형은 nesting 격자망을 사용함으로써 격자 간의 연계성을 유지하기 위해 직교좌표계가 주로 사용된 다(Lee et al., 2008; 허 등 2008).

지진해일 계산에 관한 선행 연구로부터 파랑 분산의 중 요성이 지적되었다(조, 1996; 윤 등, 2002; 윤·임, 2005). 이를 위하여 윤 등(2007)은 지진해일 전파 수치모의에서 발생하는 수치적 분산은 제거하고 물리적 분산을 정도 높 게 고려할 수 있는 능동적인 분산보정기법을 제안하였다. 즉 지진해일의 전파모의에서는 파랑의 분산을 정확하게 재 현하기 위한 노력이 계속되고 있다.

파랑의 분산은 진행거리와 방향에 따라 변할 수 있으 며 특히 해저마찰 손실은 거리의 함수로 수심의 정확성 도 필요하지만 격자체계에 의해 결정되는 거리와 방향 역 시 매우 중요하다. 위의 수치계산에 구면좌표계를 이용하 는 경우 공개된 지구타원체 좌표인 WGS84 격자수심을 바로 사용할 수 있어 편리하나 지구를 구체로 간주함으 로써 오차가 발생한다. 그러므로 구면좌표 보다는 UTM 직각좌표를 사용하는 것이 거리와 방향의 오차를 줄이는 대안이 될 수 있다.

지구타원체 좌표를 UTM 또는 TM 직각좌표로 변환하 는 식은 적용성이 입증되어 국내외의 관련 기관에서도 이를 사용하고 있다. 장 등(2003)은 지구타원체의 경위도 좌표 를 TM이나 UTM 좌표로 변환하기 위하여 DMA(1989) 의 변환식을 이용하였다. 본 연구에서와 같이 변환 구역 이 넓은 경우에는 앞에 기술한 바와 같이 변환식 특성에 의해 거리에 따라 오차는 증가하나 방향은 정확하다. 그 러나 UTM 변환식의 거리 오차에도 불구하고 이는 구면 좌표 변환에 의한 오차보다 작을 것으로 판단된다. 그래 서 본 경우와 같이 비교적 넓은 구역에 대한 UTM 좌표 변환의 정확성을 검토하기 위해 기존의 8차 변환을 12차 까지 확장을 시도하였다.

UTM 변환에 대한 기존 문헌을 정리하면 유(1995)는 일부를 무시한 8차식까지, 백 등(1993)은 일부를 무시한 5차식까지 제시하였고 범위 6°구역의 변환에는 DMA(1989) 의 식이 주로 사용된다. 이들은 일부 항만을 포함하였을 뿐 아니라 새로운 확장 변환식을 유도할 수 없을 정도로 수식의 주요 과정이 생략되었다. 한편 Thomas(1952)는 전체 유도과정을 완벽히 기술하였고 발표된 8차까지의 결 과식은 당시의 정황을 고려할 때 필산에 의한 것으로 판 단되며 이를 위해 상당한 노력과 시간을 투여한 점은 높 게 평가된다. 본 연구에서는 Matlab의 "symbolic math" tool을 이용하여 계산하고 이를 검산하였다.

제 2절에서는 12차까지 UTM 변환식의 유도과정과 결 과식을 제시하고 차수에 따라 계산된 결과의 수렴을 분 석하였다. 제 3절에서는 본 변환식을 이용하여 서(2008) 가 제시한 WGS84 좌표의 한국 주변해역 격자수심을 UTM 좌표로 변환한 수심도를 제시하였다.

#### 2. 고차 좌표변환

선정된 지구타원체를 원통에 투영하여 평면 좌표계로 좌표 변환하는 횡메카토르 투영은 Gauss-Krüger 방법으 로 등각 2중 투영법이다. 본 논문에서는 평면 직교좌표(x, y), 경위도 좌표( $\lambda$ , Ø로 표기하여 변환식을 나타낸다. 복 소 평면상의 곡선을 또 다른 복소 평면에서 등각 변환에 의해 구한 변환 식은 Taylor 전개를 이용하며 기존의 방 법(Thomas, 1952)은 8차까지 존재하나 본 논문에서는 이 를 12차까지 확장하였다. 본 절에서는 필요시 본 결과를 확장할 수 있도록 유도과정과 변환식을 자세히 나타내었 고 또한 12차까지의 계산결과도 제시하였다.

#### 2.1 타원체의 특성

타원체의 특성을 기술하기 전에 우선 타원체의 단면인 타원의 특성을 기술하기로 한다. 타원의 장, 단축의 반경 을 각각 *a*, *b*라 하면 Fig. 1의 타원은 식 (1)로 표현된다.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 (1)

타원의 이심율(eccentricity)은  $e^2 = (a^2 - b^2)/a^2$ 로 정 의되며 타원 상의 점 P(x, y)에 접하는 원의 반경은 식



Fig. 1. Definition sketch of Ellipsis.

(2)로 나타낼 수 있다.

$$R = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\frac{d^2y}{dx^2}}$$
(2)

Fig. 1에서 점 P에서의 법선이 y축과 만나는 점을 I, 선 분 PI의 길이를 N, 이 선분과 x축의 각을 측지위도 Ø라 각각 표기한다. 식 (1)을 미분하여 이를 식 (2)에 대입하 면 곡률반경은 위도에 대한 식 (3)이 된다.

$$R = \frac{a(1-e^2)}{\sqrt{(1-e^2\sin^2\phi)^3}}$$
(3)

타원을 회전시켜 생성된 입체인 타원체에서 y축을 포 함하는 평면으로 자른 단면으로부터 만들어지는 선이 자 오선이다. 그리고 선분 PI를 포함하는 평면 가운데 자오 면과 직교하는 평면에 의해 만들어지는 타원체 상의 곡 선이 묘유선이며 이 묘유선의 반경은 식 (4)로 나타낼 수 있다. 이는 Fig. 1에서  $x = N\cos\phi$ 이므로 식 (1)에  $y = [(1-e^2)\tan\phi]x$ 를 대입하여 정리하면 얻을 수 있다.

$$N = \frac{a}{\sqrt{(1 - e^2 \sin^2 \phi)}} \tag{4}$$

식 (3)과 (4)에서 자오선과 묘유선의 반경은 #의 함수이 며 위도를 결정하는 선분 *PI*의 길이는 위도에 따라 변함 을 알 수 있다.

자오선 호의 미소 길이 *dS*는 자오선 곡률반경 *R*에 *d*¢ 를 곱한 값과 같아 식 (5)가 성립한다.

$$dS = Rd\phi \tag{5}$$

자오선 호의 길이는 자오선의 곡률 반경을 위도에 대해

 Table 1. Coefficients for 9 terms in Eq. (6)

적분한 값과 같으며 피적분 함수를 Taylor 전개한 후 배 각공식을 이용하여 적분하면 식 (6)을 얻을 수 있다.

$$S(\phi) = \int_{0}^{\phi} Rd\phi = \int_{0}^{\phi} \frac{a(1-e^{2})}{(1-e^{2}\sin^{2}\phi)^{3/2}} d\phi$$
$$= a(1-e^{2}) \left[ \phi \sum_{m=0}^{n} c_{0,m}e^{2m} + \sum_{k=1}^{n} \frac{(-1)^{k}\sin(2k\phi)\sum_{m=k}^{n} c_{k,m}e^{2m}}{2k} \right]$$
(6)

Table 1에 식 (6)에 존재하는 적분 계수  $c_{k,m}$ 를 9항까지 정리하였다.

지구의 형상은 매우 불규칙하여 간단한 함수로 나타내 기 어려우나 수식 유도의 편의상 지구를 가상적인 타원 체로 가정한다. 그러므로 지구 형상의 특성인 부피, 질량 등을 대표하는 관점에 따라 다양한 지구 타원체가 제안 되었다. 이 가운데 국내 지형도와 해도에서는 WGS84와 Bessel 타원체가 사용되며 이들의 상수를 Table 2에 나타 내었다. 여기서 편평율 f은 (*a-b*)/a로 정의된다.

식 (6)의 항의 개수에 따른 WGS84 타원체 자오선 호 의 길이를 계산하여 그 결과를 Table 3에 나타내었다. 표 에는 적도에서부터 위도 20<sup>0</sup>에서 70<sup>0</sup>까지의 자오선 호의 길이를 나타내었고 6개 이상의 항으로부터 계산한 값은 설정된 구간에서 1/10 mm까지 동일한 것으로 나타났다. 타원체의 주요 변수인 *R*과 *N*은 위도의 함수로 이들의

미분은 뒤에 기술될 좌표변환에 필요하기 때문에 여기에 관련 미분을 정리하였다. 이심율의 제곱  $e^2$ 은 타원체의 정

Table 2. Reference ellipsoid constants

|                 | WGS84           | Bessel          |
|-----------------|-----------------|-----------------|
| 장반경(a)          | 6,378,137.000 m | 6,377,397.155 m |
| 편평율( <i>f</i> ) | 1/298.25722356  | 1/299.15281280  |

| k $m$ | 0 | 1   | 2     | 3       | 4           | 5            | 6               | 7                 | 8                    |
|-------|---|-----|-------|---------|-------------|--------------|-----------------|-------------------|----------------------|
| 0     | 1 | 3/4 | 45/64 | 175/256 | 11025/16384 | 43659/65536  | 693693/1048576  | 2760615/4194304   | 703956825/1073741824 |
| 1     |   | 3/4 | 15/16 | 525/512 | 2205/2048   | 72765/65536  | 297297/262144   | 19324305/16777216 | 78217425/67108864    |
| 2     |   |     | 15/64 | 105/256 | 2205/4096   | 10395/16384  | 1486485/2097152 | 6441435/8388608   | 109504395/134217728  |
| 3     |   |     |       | 35/512  | 315/2048    | 31185/131072 | 165165/524288   | 6441435/16777216  | 29864835/67108864    |
| 4     |   |     |       |         | 315/16384   | 3465/65536   | 99099/1048576   | 585585/4194304    | 49774725/268435456   |
| 5     |   |     |       |         |             | 693/131072   | 9009/524288     | 585585/16777216   | 3828825/67108864     |
| 6     |   |     |       |         |             |              | 3003/2097152    | 45045/8388608     | 1640925/134217728    |
| 7     |   |     |       |         |             |              |                 | 6435/16777216     | 109395/67108864      |
| 8     |   |     |       |         |             |              |                 |                   | 109395/1073741824    |
|       |   |     |       |         |             |              |                 |                   |                      |

Table 3. Computations of Meridian length in meters from Equator for different number of terms in Eq. (6) based on WGS84 ellipsoid

| n | N 20°        | N 30°        | N 40°        | N 50°        | N 60°        | N 70°        |
|---|--------------|--------------|--------------|--------------|--------------|--------------|
| 3 | 2212366.2538 | 3320113.3928 | 4429528.9974 | 5540846.9150 | 6654072.4700 | 7768979.9733 |
| 4 | 2212366.2542 | 3320113.3979 | 4429529.0303 | 5540847.0412 | 6654072.8179 | 7768980.7237 |
| 5 | 2212366.2542 | 3320113.3979 | 4429529.0304 | 5540847.0417 | 6654072.8195 | 7768980.7277 |
| 6 | 2212366.2542 | 3320113.3979 | 4429529.0304 | 5540847.0417 | 6654072.8195 | 7768980.7278 |
| 9 | 2212366.2542 | 3320113.3979 | 4429529.0304 | 5540847.0417 | 6654072.8195 | 7768980.7278 |

의에 따라 다르나 대략 0.0067 정도로 작아 위의 변수는 타원의 장반경과 거의 같은 값을 가진다. 그래서 이로부 터 파생된 무차원 변수  $\sigma = N/R$ 는 위도의 함수이나 대략 1의 크기를 갖는다.

$$\frac{dN}{d\phi} = \frac{ae^2 \sin\phi \cos\phi}{\left(1 - e^2 \sin^2\phi\right)^{3/2}} = N\left(1 - \frac{1}{\sigma}\right) \tan\phi$$

$$\frac{dR}{d\phi} = \frac{3a(1 - e^2)\sin\phi\cos\phi}{\left(1 - e^2 \sin^2\phi\right)^{5/2}} = 3\frac{N}{\sigma}\left(1 - \frac{1}{\sigma}\right) \tan\phi$$

$$\frac{d(N\cos\phi)}{d\phi} = -R\sin\phi = -\frac{N}{\sigma}\sin\phi$$

$$\frac{d(N/R)}{d\phi} = 2\left(1 - \frac{N}{R}\right) \tan\phi \equiv 2(1 - \sigma) \tan\phi \qquad (7)$$

#### 2.2 경위도(λ, ψ)에서 UTM 좌표(x, y)로 변환

경위도 좌표를 직교좌표인 UTM 좌표로 변환하기 위 해 복소평면 *z* = *x*+*iy* 상의 임의 곡선을 또 다른 평면 *w* = *λ*+*it*에 함수 *g*로 등각 사상(conformal mapping)한 곡선에 근거하여 변환식을 유도한다.

$$x + iy = g(\lambda + i\tau) \tag{8}$$

중심자오선 상의 한 점에서는 λ=0이고 이를 사상한 값 역시 x=0가 된다. 그리고 이 선에 위치하지 않는 한 점 P와 이에 대응되는 점은 식 (8)에서 λ를 변수로 취급하 여 g(w)를 w=it에서 Taylor 전개하면 식 (9)를 얻는다.

$$x + iy = g(i\tau) + \frac{\lambda}{1!dw} + \frac{\lambda^2}{2!} \frac{d^2g}{dw^2} + \frac{\lambda^3}{3!} \frac{d^3g}{dw^3} + \dots$$
(9)

한편 중심자오선에서는 *dw* = *idτ*, *iy* = g(*it*) = *iS*이 되고 또한 *w*평면에 사상된 곡선의 길이도 *S* = g(*t*)이므로 식 (9)의 미분항을 다음과 같이 표현할 수 있다.

$$\frac{dg}{dw} = \frac{d}{d\tau} [g(i\tau)] \frac{d\tau}{dw} = \frac{d}{d\tau} [ig(\tau)] \frac{1}{i} \equiv g^{(1)}$$
$$\frac{d^2g}{dw^2} = \frac{d}{d\tau} [g^{(1)}] \frac{d\tau}{dw} = g^{(2)} \frac{1}{i} = -ig^{(2)}, \dots$$
(10)

식 (10)을 식 (9)에 대입하면 복소수 상등관계로부터 식 (11)을 얻게 된다.

$$x = \lambda g^{(1)} - \frac{\lambda^3}{3!} g^{(3)} + \frac{\lambda^5}{5!} g^{(5)} - \frac{\lambda^7}{7!} g^{(7)} + \frac{\lambda^9}{9!} g^{(9)} - \frac{\lambda^{11}}{11!} g^{(11)} + \dots$$
$$y = g(\tau) - \frac{\lambda^2}{2!} g^{(2)} + \frac{\lambda^4}{4!} g^{(4)} - \frac{\lambda^6}{6!} g^{(6)} + \frac{\lambda^8}{8!} g^{(8)} - \frac{\lambda^{10}}{10!} g^{(10)} + \dots$$
(11)

식 (11)의 미분 항들을 계산하기 위해 등각 사상의 조 건인 식 (12)를 이용한다(Thomas, 1952).

$$d\tau = \frac{R}{N\cos\phi}d\phi \tag{12}$$

식 (12), (5)와 (7)을 이용하면 식 (11)의 우변 미분들은 다음 식 (13)이 된다.

$$g'(\tau) = \frac{dg}{d\tau} \equiv g^{(1)} = \frac{dSd\phi}{d\phi d\tau} = N\cos\phi$$
$$g^{(2)} = \frac{d(N\cos\phi)}{d\tau} = \frac{d(N\cos\phi)}{d\phi} \frac{d\phi}{d\tau} = -\frac{N}{2}\sin2\phi, \dots (13)$$

식 (13)에서 예상할 수 있듯이 미분 차수가 증가하면 생 성되는 항의 수가 급격히 늘어나게 된다. 현재까지 유도 된 미분 차수는 Thomas(1952)에 의한 8차로 항의 총 개 수는 91이다. DMA(1989) 식은 7차와 8차 항의 일부만 을 사용하여 항의 수를 줄인 것이다. 그러나 본 논문에서 는 12차까지 확장하여 항의 개수는 302개에 이르며 미분 을 구하는 그 자체는 단순하나 파생되는 항들이 너무 많 아 매우 복잡함으로 주의가 필요하다. 따라서 계산결과를 확인하여 이를 식 (14)로 표현하고 관련된 미분 상수를 Table 4에 나타냈고 8차까지는 기존의 결과와 일치한다.

$$g^{(n)} = \begin{cases} \frac{N}{2^{n-1}} \sum_{k=1}^{(n+1)/2} \sum_{m=0}^{n-2} c_{k,m} \sigma^m \cos(2k-1)\phi, \ n = odd \\ \frac{N}{2^{n-1}} \sum_{k=1}^{n/2} \sum_{m=0}^{n-2} c_{k,m} \sigma^m \sin(2k)\phi, \qquad n = even \end{cases}$$
(14)

단 상한 "*n*-2"는 2보다 작은 경우에는 0이다. 수치계산의 오차를 줄이고 수식을 간편하게 하기 위하여 식 (14)에서 는 기존 식(DMA, 1989)과 달리 무차원 상수 *o*를 채택· 사용하였다. UTM 좌표 변환을 위해 유도된 식 (11)에서 경도 λ는 중심자오선 λ<sub>0</sub>을 기준한 각 거리(경거)로 실제 계산에서 는 이를 분명히 나타낼 필요가 있다. 좌표변환의 입력 자 료로는 측지 경도와 위도가 주어지며 이로부터 횡좌표 *x* 

Table 4a. Coefficients of differential terms in Eq. (14)

| 미분                |                  | $\sigma^0$ | $\sigma^1$ | $\sigma^2$ | $\sigma^3$ | $\sigma^4$  | $\sigma^5$   | $\sigma^{6}$ |
|-------------------|------------------|------------|------------|------------|------------|-------------|--------------|--------------|
| $g^{(1)}$         | Ncosø            | 1          |            |            |            |             |              |              |
| $g^{(2)}$         | $N\cos 2\phi$    | -1         |            |            |            |             |              |              |
| (3)               | Ncosø            | 1          | -3         |            |            |             |              |              |
| g                 | $N\cos 3\phi$    | -1         | -1         |            |            |             |              |              |
| (4)               | $N sin 2\phi$    | -2         | 2          | 8          |            |             |              |              |
| g                 | $N$ sin4 $\phi$  | 1          | 1          | 4          |            |             |              |              |
|                   | Ncosø            | 2          | -4         | 26         | -8         |             |              |              |
| $g^{(5)}$         | $N\cos 3\phi$    | -3         | 2          | -3         | 44         |             |              |              |
|                   | $N\cos 5\phi$    | 1          | 2          | -7         | 28         |             |              |              |
|                   | $N sin 2\phi$    | -5         | 6          | 91         | -364       | 136         |              |              |
| $g^{(6)}$         | $N$ sin4 $\phi$  | 4          | 0          | -4         | 112        | -352        |              |              |
|                   | $N sin 6 \phi$   | -1         | -2         | -33        | 196        | -280        |              |              |
|                   | Ncosø            | 5          | -9         | 279        | -1911      | 2044        | -680         |              |
| a <sup>(7)</sup>  | $N\cos 3\phi$    | -9         | 9          | -267       | 2831       | -6076       | 2280         |              |
| 8                 | $N\cos 5\phi$    | 5          | 3          | -97        | 293        | 1708        | -3592        |              |
|                   | $N\cos7\phi$     | -1         | -3         | 85         | -1277      | 4116        | -3640        |              |
|                   | $N sin 2\phi$    | -14        | 18         | 1638       | -24826     | 73968       | -67296       | 20480        |
| c <sup>(8)</sup>  | $N$ sin4 $\phi$  | 14         | -6         | -558       | 14486      | -77136      | 117024       | -41728       |
| 8                 | $N sin 6 \phi$   | -6         | -6         | -546       | 8286       | -17232      | -20064       | 43008        |
|                   | $Nsin8\phi$      | 1          | 3          | 279        | -7235      | 44136       | -90384       | 58240        |
|                   | Ncosø            | 14         | -24        | 4932       | -125768    | 592254      | -975504      | 696352       |
|                   | $N\cos 3\phi$    | -28        | 32         | -6552      | 204192     | -1245996    | 2556000      | -2009664     |
| $g^{(9)}$         | $N\cos 5\phi$    | 20         | 0          | -24        | -36544     | 557988      | -2065056     | 2513600      |
|                   | $N\cos7\phi$     | -7         | -12        | 2454       | -81124     | 499017      | -812760      | -43024       |
|                   | $N\cos 9\phi$    | 1          | 4          | -810       | 39244      | -403007     | 1475496      | -2177168     |
|                   | $N sin 2\phi$    | -42        | 56         | 34436      | -1669528   | 14030742    | -41505552    | 54857216     |
|                   | $N sin 4\phi$    | 48         | -32        | -19712     | 1243040    | -14261424   | 55165440     | -88688128    |
| $g^{(10)}$        | $N sin 6 \phi$   | -27        | -12        | -7362      | 213276     | 940485      | -17966520    | 55408128     |
|                   | $Nsin8\phi$      | 8          | 16         | 9856       | -621520    | 7130680     | -26774528    | 36479744     |
|                   | $N sin 10 \phi$  | -1         | -4         | -2470      | 205940     | -3370465    | 19727576     | -50507776    |
|                   | Ncosø            | 42         | -70        | 103364     | -8382076   | 103223778   | -443703678   | 893968240    |
|                   | $N\cos 3\phi$    | -90        | 110        | -162372    | 14715308   | -210974898  | 1039099878   | -2311387056  |
| a <sup>(11)</sup> | $N\cos 5\phi$    | 75         | -25        | 36830      | -5308890   | 117813999   | -816003789   | 2356109096   |
| g                 | $N\cos7\phi$     | -35        | -35        | 51682      | -4190958   | 43812841    | -59915087    | -450935496   |
|                   | $N\cos 9\phi$    | 9          | 25         | -36870     | 4228426    | -80558075   | 515367741    | -1392302120  |
|                   | $N$ cos11 $\phi$ | -1         | -5         | 7366       | -1061810   | 26682355    | -234846089   | 930409480    |
|                   | $N sin 2\phi$    | -132       | 180        | 797128     | -115900376 | 2279113804  | -15014921820 | 45930544304  |
|                   | $N sin 4\phi$    | 165        | -135       | -597946    | 101021562  | -2419244743 | 19041309981  | -67075671364 |
| a <sup>(12)</sup> | $Nsin6\phi$      | -110       | -10        | -44196     | -6091028   | 579478922   | -8218566306  | 42181713384  |
| 8                 | $Nsin8\phi$      | 44         | 60         | 265736     | -42392520  | 903974204   | -5629809076  | 11313674256  |
|                   | $N sin 10 \phi$  | -10        | -30        | -132908    | 26834692   | -803510114  | 7934124250   | -34356754760 |
|                   | $N \sin 12\phi$  | 1          | 5          | 22158      | -5412174   | 203765445   | -2593897191  | 14931426060  |

서승남

Table 4b. (Continued) Coefficients of differential terms in Eq. (14)

|                   |                 | $\sigma^7$   | $\sigma^8$    | $\sigma^9$   | $\sigma^{\scriptscriptstyle 10}$ |
|-------------------|-----------------|--------------|---------------|--------------|----------------------------------|
|                   | Ncosø           | -184320      |               |              |                                  |
|                   | $N\cos 3\phi$   | 558336       |               |              |                                  |
| $g^{(9)}$         | $N\cos 5\phi$   | -840960      |               |              |                                  |
|                   | $N\cos7\phi$    | 556416       |               |              |                                  |
|                   | $N\cos 9\phi$   | 1106560      |               |              |                                  |
|                   | $N sin 2\phi$   | -34088064    | 8163840       |              |                                  |
|                   | $N$ sin4 $\phi$ | 61407744     | -15661056     |              |                                  |
| $g^{(10)}$        | $N sin 6 \phi$  | -58555584    | 18475776      |              |                                  |
|                   | $Nsin8\phi$     | -10731776    | -6702080      |              |                                  |
|                   | $N sin 10 \phi$ | 57928640     | -24344320     |              |                                  |
|                   | Ncosø           | -936859776   | 497426304     | -106129920   |                                  |
|                   | $N\cos 3\phi$   | 2575406208   | -1421364096   | 311056896    |                                  |
| a <sup>(11)</sup> | $N\cos 5\phi$   | -3166885824  | 1965873216    | -463842048   |                                  |
| g                 | $N\cos7\phi$    | 1454208448   | -1436565056   | 434905856    |                                  |
|                   | $N\cos 9\phi$   | 1636208320   | -663786816    | -32426240    |                                  |
|                   | Ncos11ø         | -1813735616  | 1697523520    | -608608000   |                                  |
|                   | $N sin 2\phi$   | -74878173120 | 67651954944   | -32107365888 | 6265135104                       |
|                   | $N$ sin4 $\phi$ | 121145869776 | -117350145600 | 58416567936  | -11787242496                     |
| _(12)             | $N sin 6 \phi$  | -99575713056 | 116765769600  | -66088699136 | 14553583616                      |
| g                 | $Nsin8\phi$     | 2966236352   | -34131009280  | 35566355968  | -10697150464                     |
|                   | $N sin 10 \phi$ | 72695313568  | -75043709312  | 32516067584  | -2808565760                      |
|                   | $N sin 12\phi$  | -44047571568 | 68992507584   | -54481947520 | 17041024000                      |

과 종좌표 y를 계산한다. UTM 변환의 특성상 약간의 오 차를 포함하게 되며 이를 평균적인 관점에서 보정하기 위 한 방안으로 축척계수 m<sub>o</sub>를 사용한다. 아래의 식 (15)는 이들을 고려하여 입력 자료로부터 UTM 좌표를 계산하는 식으로 x<sub>o</sub>, y<sub>o</sub>는 좌표의 평행 이동량(통상 500,000 m와 0 m)를 각각 포함한다. 그리고  $\Delta\lambda$ 는 입력 경도에서 중심 자오선의 경도를 뺀 값이며 S는 적도에서부터 입력 위도 까지 계산한 자오선 호의 길이이다.

$$\frac{x - x_o}{m_o} = \Delta \lambda g^{(1)} - \frac{(\Delta \lambda)^3}{3!} g^{(3)} + \frac{(\Delta \lambda)^5}{5!} g^{(5)} - \frac{(\Delta \lambda)^7}{7!} g^{(7)} + \dots$$

$$\frac{y - y_o}{m_o} = S - \frac{(\Delta \lambda)^2}{2!} g^{(2)} + \frac{(\Delta \lambda)^4}{4!} g^{(4)} - \frac{(\Delta \lambda)^6}{6!} g^{(6)} + \dots \quad (15)$$

식 (15)와 Table 4의 계수를 이용하여 N20°~N70°까지 10° 간격에 대해 항의 개수를 달리하여 UTM 좌표로 변 환한 결과를 Table 5에 나타내었다. 계산은 중심자오선에서 3°, 10°, 12° 그리고 14° 떨어진 경도를 각각 사용하였으 며 축척 계수는 0.9996을 사용하였다. 계산에는 Matlab 배정도수(double precision, 유효수자 16개)를 사용하여 수치오차를 최소화하였다.

Table 5에서 알 수 있듯이 중심자오선에서 멀어질수록

고차의 항이 필요하다. UTM 도엽은 일반적으로 3°씩 경 도 범위 6°의 구간으로 나누어 만들어지기 때문에 6차의 미분항으로도 충분한 것을 알 수 있다. 그러나 좌우 14° 구간에서는 최소 10개의 미분항을 사용하여야 cm의 정밀 도를 얻을 수 있다. 또한 국토지리정보원(2006)의 좌표변 환프로그램을 이용하여 계산결과를 상호 비교하였고 통상 의 적용 구역에서는 동일한 것으로 나타났다. 국토지리정 보원의 변환식에 관한 참고문헌이 없으나 이는 최대 8차 까지 전개한 식을 이용한 것으로 추정된다.

#### 2.3 UTM에서 경위도 좌표로 변환

평면 직교좌표인 UTM에서 경위도 좌표로 변환하는 과 정도 제 2.2절에 기술한 것과 유사하다. 즉 복소 z평면 상 의 곡선을 함수 f(z)를 사용하여 또 다른 복소 w평면으 로 사상하는 관계식으로부터 유도한다.

$$\lambda + i\tau = f(x + iy) \tag{16}$$

중심자오선 상의 한 점에서는  $\lambda = 0, x = 0$ 이므로  $i\tau = f(iy)$ 가 된다. 중심자오선에서 벗어난 점 P의 직교좌표를  $(x_1, y_1)$ 로 표기하면 Fig. 2와 같이 위도  $\phi_1 \in y_1$ 과 대응되며 이 는 주어진 값이다. UTM 투영에 의한 고차 좌표변환

Table 5. Computations of UTM transformation in meters for different number of terms in Eq. (15) based on WGS84 ellipsoid

|                  | =14 <sup>°</sup>                                                                                                                                                            | N 20°                                                                                                                                                                                                                            | N 30°                                                                                                                                                                                             | N 40°                                                                                                                                                                                                             | N 50°                                                                                                                                                                                                             | N 60°                                                                                                                                                                             | N 70°                                                                                                                                                                                                           |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | 5                                                                                                                                                                           | 1975803.7186                                                                                                                                                                                                                     | 1857016.0140                                                                                                                                                                                      | 1697039.2953                                                                                                                                                                                                      | 1501521.4818                                                                                                                                                                                                      | 1276947.1896                                                                                                                                                                      | 1030308.5018                                                                                                                                                                                                    |
|                  | 7                                                                                                                                                                           | 1975803.7283                                                                                                                                                                                                                     | 1857014.0477                                                                                                                                                                                      | 1697037.3341                                                                                                                                                                                                      | 1501520.6950                                                                                                                                                                                                      | 1276947.3023                                                                                                                                                                      | 1030308.7284                                                                                                                                                                                                    |
| x                | 9                                                                                                                                                                           | 1975803.7006                                                                                                                                                                                                                     | 1857014.0008                                                                                                                                                                                      | 1697037.3164                                                                                                                                                                                                      | 1501520.7021                                                                                                                                                                                                      | 1276947.3094                                                                                                                                                                      | 1030308.7291                                                                                                                                                                                                    |
|                  | 11                                                                                                                                                                          | 1975803.6997                                                                                                                                                                                                                     | 1857014.0001                                                                                                                                                                                      | 1697037.3166                                                                                                                                                                                                      | 1501520.7024                                                                                                                                                                                                      | 1276947.3094                                                                                                                                                                      | 1030308.7291                                                                                                                                                                                                    |
|                  | 6                                                                                                                                                                           | 2274024.1735                                                                                                                                                                                                                     | 3402738.4660                                                                                                                                                                                      | 4522798.4959                                                                                                                                                                                                      | 5633225.8924                                                                                                                                                                                                      | 6734234.6863                                                                                                                                                                      | 7827131.3017                                                                                                                                                                                                    |
|                  | 8                                                                                                                                                                           | 2274024.6285                                                                                                                                                                                                                     | 3402738.6178                                                                                                                                                                                      | 4522798.3824                                                                                                                                                                                                      | 5633225.7533                                                                                                                                                                                                      | 6734234.6441                                                                                                                                                                      | 7827131.3106                                                                                                                                                                                                    |
| У                | 10                                                                                                                                                                          | 2274024.6354                                                                                                                                                                                                                     | 3402738.6162                                                                                                                                                                                      | 4522798.3786                                                                                                                                                                                                      | 5633225.7523                                                                                                                                                                                                      | 6734234.6446                                                                                                                                                                      | 7827131.3108                                                                                                                                                                                                    |
|                  | 12                                                                                                                                                                          | 2274024.6354                                                                                                                                                                                                                     | 3402738.6161                                                                                                                                                                                      | 4522798.3785                                                                                                                                                                                                      | 5633225.7523                                                                                                                                                                                                      | 6734234.6446                                                                                                                                                                      | 7827131.3108                                                                                                                                                                                                    |
| $\Delta \lambda$ | $=12^{\circ}$                                                                                                                                                               | N 20°                                                                                                                                                                                                                            | N 30°                                                                                                                                                                                             | N 40°                                                                                                                                                                                                             | N 50°                                                                                                                                                                                                             | N 60°                                                                                                                                                                             | N 70°                                                                                                                                                                                                           |
|                  | 5                                                                                                                                                                           | 1762382.8572                                                                                                                                                                                                                     | 1661625.4119                                                                                                                                                                                      | 1525592.9524                                                                                                                                                                                                      | 1358876.2396                                                                                                                                                                                                      | 1166860.5451                                                                                                                                                                      | 955482.7510                                                                                                                                                                                                     |
|                  | 7                                                                                                                                                                           | 1762382.8605                                                                                                                                                                                                                     | 1661624.7435                                                                                                                                                                                      | 1525592.2858                                                                                                                                                                                                      | 1358875.9721                                                                                                                                                                                                      | 1166860.5834                                                                                                                                                                      | 955482.8280                                                                                                                                                                                                     |
| х                | 9                                                                                                                                                                           | 1762382.8536                                                                                                                                                                                                                     | 1661624.7318                                                                                                                                                                                      | 1525592.2814                                                                                                                                                                                                      | 1358875.9739                                                                                                                                                                                                      | 1166860.5852                                                                                                                                                                      | 955482.8282                                                                                                                                                                                                     |
|                  | 11                                                                                                                                                                          | 1762382.8534                                                                                                                                                                                                                     | 1661624.7317                                                                                                                                                                                      | 1525592.2814                                                                                                                                                                                                      | 1358875.9740                                                                                                                                                                                                      | 1166860.5852                                                                                                                                                                      | 955482.8282                                                                                                                                                                                                     |
|                  | 6                                                                                                                                                                           | 2257164.5395                                                                                                                                                                                                                     | 3380175.8661                                                                                                                                                                                      | 4497349.8668                                                                                                                                                                                                      | 5607994.6413                                                                                                                                                                                                      | 6712222.5574                                                                                                                                                                      | 7810897.7283                                                                                                                                                                                                    |
|                  | 8                                                                                                                                                                           | 2257164.6721                                                                                                                                                                                                                     | 3380175.9103                                                                                                                                                                                      | 4497349.8337                                                                                                                                                                                                      | 5607994.6008                                                                                                                                                                                                      | 6712222.5452                                                                                                                                                                      | 7810897.7309                                                                                                                                                                                                    |
| y                | 10                                                                                                                                                                          | 2257164.6735                                                                                                                                                                                                                     | 3380175.9100                                                                                                                                                                                      | 4497349.8329                                                                                                                                                                                                      | 5607994.6006                                                                                                                                                                                                      | 6712222.5453                                                                                                                                                                      | 7810897.7309                                                                                                                                                                                                    |
|                  | 12                                                                                                                                                                          | 2257164.6735                                                                                                                                                                                                                     | 3380175.9100                                                                                                                                                                                      | 4497349.8329                                                                                                                                                                                                      | 5607994.6006                                                                                                                                                                                                      | 6712222.5453                                                                                                                                                                      | 7810897.7309                                                                                                                                                                                                    |
| $\Delta\lambda$  | $=10^{\circ}$                                                                                                                                                               | N 20°                                                                                                                                                                                                                            | N 30°                                                                                                                                                                                             | N 40°                                                                                                                                                                                                             | N 50°                                                                                                                                                                                                             | N 60°                                                                                                                                                                             | N 70°                                                                                                                                                                                                           |
|                  | 5                                                                                                                                                                           | 1550165.3073                                                                                                                                                                                                                     | 1466939.8811                                                                                                                                                                                      | 1354343.0291                                                                                                                                                                                                      | 1216025.3913                                                                                                                                                                                                      | 1056351.2485                                                                                                                                                                      | 880225.3000                                                                                                                                                                                                     |
| r                | 7                                                                                                                                                                           | 1550165.3082                                                                                                                                                                                                                     | 1466939.6945                                                                                                                                                                                      | 1354342.8431                                                                                                                                                                                                      | 1216025.3167                                                                                                                                                                                                      | 1056351.2592                                                                                                                                                                      | 880225.3215                                                                                                                                                                                                     |
| ~                |                                                                                                                                                                             |                                                                                                                                                                                                                                  |                                                                                                                                                                                                   |                                                                                                                                                                                                                   |                                                                                                                                                                                                                   |                                                                                                                                                                                   |                                                                                                                                                                                                                 |
|                  | 9                                                                                                                                                                           | 1550165.3069                                                                                                                                                                                                                     | 1466939.6923                                                                                                                                                                                      | 1354342.8422                                                                                                                                                                                                      | 1216025.3170                                                                                                                                                                                                      | 1056351.2596                                                                                                                                                                      | 880225.3216                                                                                                                                                                                                     |
|                  | 9<br>11                                                                                                                                                                     | 1550165.3069<br>1550165.3068                                                                                                                                                                                                     | 1466939.6923<br>1466939.6922                                                                                                                                                                      | 1354342.8422<br>1354342.8422                                                                                                                                                                                      | 1216025.3170<br>1216025.3170                                                                                                                                                                                      | 1056351.2596<br>1056351.2596                                                                                                                                                      | 880225.3216<br>880225.3215                                                                                                                                                                                      |
|                  | 9<br>11<br>6                                                                                                                                                                | 1550165.3069<br>1550165.3068<br>2243050.5510                                                                                                                                                                                     | 1466939.6923<br>1466939.6922<br>3361248.7421                                                                                                                                                      | 1354342.8422<br>1354342.8422<br>4475948.5573                                                                                                                                                                      | 1216025.3170<br>1216025.3170<br>5586720.8540                                                                                                                                                                      | 1056351.2596<br>1056351.2596<br>6693618.3533                                                                                                                                      | 880225.3216<br>880225.3215<br>7797150.9893                                                                                                                                                                      |
| V                | 9<br>11<br>6<br>8                                                                                                                                                           | 1550165.3069<br>1550165.3068<br>2243050.5510<br>2243050.5818                                                                                                                                                                     | 1466939.6923<br>1466939.6922<br>3361248.7421<br>3361248.7524                                                                                                                                      | 1354342.8422<br>1354342.8422<br>4475948.5573<br>4475948.5496                                                                                                                                                      | 1216025.3170<br>1216025.3170<br>5586720.8540<br>5586720.8446                                                                                                                                                      | 1056351.2596<br>1056351.2596<br>6693618.3533<br>6693618.3505                                                                                                                      | 880225.3216<br>880225.3215<br>7797150.9893<br>7797150.9899                                                                                                                                                      |
| у                | 9<br>11<br>6<br>8<br>10                                                                                                                                                     | 1550165.3069<br>1550165.3068<br>2243050.5510<br>2243050.5818<br>2243050.5820                                                                                                                                                     | 1466939.6923<br>1466939.6922<br>3361248.7421<br>3361248.7524<br>3361248.7523                                                                                                                      | 1354342.8422<br>1354342.8422<br>4475948.5573<br>4475948.5496<br>4475948.5494                                                                                                                                      | 1216025.3170<br>1216025.3170<br>5586720.8540<br>5586720.8446<br>5586720.8446                                                                                                                                      | 1056351.2596<br>1056351.2596<br>6693618.3533<br>6693618.3505<br>6693618.3505                                                                                                      | 880225.3216<br>880225.3215<br>7797150.9893<br>7797150.9899<br>7797150.9899                                                                                                                                      |
| y                | 9<br>11<br>6<br>8<br>10<br>12                                                                                                                                               | 1550165.3069<br>1550165.3068<br>2243050.5510<br>2243050.5818<br>2243050.5820<br>2243050.5820                                                                                                                                     | 1466939.6923<br>1466939.6922<br>3361248.7421<br>3361248.7524<br>3361248.7523<br>3361248.7523                                                                                                      | 1354342.8422<br>1354342.8422<br>4475948.5573<br>4475948.5496<br>4475948.5494<br>4475948.5494                                                                                                                      | 1216025.3170<br>1216025.3170<br>5586720.8540<br>5586720.8446<br>5586720.8446<br>5586720.8446                                                                                                                      | 1056351.2596<br>1056351.2596<br>6693618.3533<br>6693618.3505<br>6693618.3505<br>6693618.3505                                                                                      | 880225.3216<br>880225.3215<br>7797150.9893<br>7797150.9899<br>7797150.9899<br>7797150.9899                                                                                                                      |
| у<br>Д           | 9<br>11<br>6<br>8<br>10<br>12<br>R=3°                                                                                                                                       | 1550165.3069<br>1550165.3068<br>2243050.5510<br>2243050.5818<br>2243050.5820<br>2243050.5820<br>N 20°                                                                                                                            | 1466939.6923<br>1466939.6922<br>3361248.7421<br>3361248.7524<br>3361248.7523<br>3361248.7523<br>N 30°                                                                                             | 1354342.8422<br>1354342.8422<br>4475948.5573<br>4475948.5496<br>4475948.5494<br>4475948.5494<br>N 40°                                                                                                             | 1216025.3170<br>1216025.3170<br>5586720.8540<br>5586720.8446<br>5586720.8446<br>5586720.8446<br>N 50°                                                                                                             | 1056351.2596<br>1056351.2596<br>6693618.3533<br>6693618.3505<br>6693618.3505<br>6693618.3505<br>N 60°                                                                             | 880225.3216<br>880225.3215<br>7797150.9893<br>7797150.9899<br>7797150.9899<br>7797150.9899<br>N 70°                                                                                                             |
| y<br>            | $9$ $11$ $6$ $8$ $10$ $12$ $3^{\circ}$ $5$                                                                                                                                  | 1550165.3069<br>1550165.3068<br>2243050.5510<br>2243050.5818<br>2243050.5820<br>2243050.5820<br>N 20°<br>813926.3204                                                                                                             | 1466939.6923<br>1466939.6922<br>3361248.7421<br>3361248.7524<br>3361248.7523<br>3361248.7523<br>N 30°<br>789409.6533                                                                              | 1354342.8422<br>1354342.8422<br>4475948.5573<br>4475948.5496<br>4475948.5494<br>4475948.5494<br>4475948.5494<br>N 40°<br>756099.6480                                                                              | 1216025.3170<br>1216025.3170<br>5586720.8540<br>5586720.8446<br>5586720.8446<br>5586720.8446<br>N 50°<br>714984.2368                                                                                              | 1056351.2596<br>1056351.2596<br>6693618.3533<br>6693618.3505<br>6693618.3505<br>6693618.3505<br>6693618.3505<br>N 60°<br>667294.8211                                              | 880225.3216<br>880225.3215<br>7797150.9893<br>7797150.9899<br>7797150.9899<br>7797150.9899<br>7797150.9899<br>N 70°<br>614473.7147                                                                              |
| y<br>Δλ          | $     9     11     6     8     10     12     R=3^{\circ}     5     7 $                                                                                                      | 1550165.3069<br>1550165.3068<br>2243050.5510<br>2243050.5818<br>2243050.5820<br>2243050.5820<br>N 20°<br>813926.3204<br>813926.3204                                                                                              | 1466939.6923<br>1466939.6922<br>3361248.7421<br>3361248.7524<br>3361248.7523<br>3361248.7523<br>N 30°<br>789409.6533<br>789409.6532                                                               | 1354342.8422<br>1354342.8422<br>4475948.5573<br>4475948.5496<br>4475948.5494<br>4475948.5494<br>4475948.5494<br>N 40°<br>756099.6480<br>756099.6480                                                               | 1216025.3170<br>1216025.3170<br>5586720.8540<br>5586720.8446<br>5586720.8446<br>5586720.8446<br>5586720.8446<br>N 50°<br>714984.2368<br>714984.2367                                                               | 1056351.2596<br>1056351.2596<br>6693618.3533<br>6693618.3505<br>6693618.3505<br>6693618.3505<br>6693618.3505<br>N 60°<br>667294.8211<br>667294.8211                               | 880225.3216<br>880225.3215<br>7797150.9893<br>7797150.9899<br>7797150.9899<br>7797150.9899<br>7797150.9899<br>N 70°<br>614473.7147<br>614473.7147                                                               |
| у<br><br>        | $   \begin{array}{r}     9 \\     11 \\     6 \\     8 \\     10 \\     12 \\     \hline     5 \\     7 \\     9   \end{array} $                                            | 1550165.3069<br>1550165.3068<br>2243050.5510<br>2243050.5818<br>2243050.5820<br>2243050.5820<br>N 20°<br>813926.3204<br>813926.3204<br>813926.3204                                                                               | 1466939.6923<br>1466939.6922<br>3361248.7421<br>3361248.7524<br>3361248.7523<br>3361248.7523<br>3361248.7523<br>N 30°<br>789409.6533<br>789409.6532<br>789409.6532                                | 1354342.8422<br>1354342.8422<br>4475948.5573<br>4475948.5496<br>4475948.5494<br>4475948.5494<br>4475948.5494<br>N 40°<br>756099.6480<br>756099.6480<br>756099.6480                                                | 1216025.3170<br>1216025.3170<br>5586720.8540<br>5586720.8446<br>5586720.8446<br>5586720.8446<br>N 50°<br>714984.2368<br>714984.2367<br>714984.2367                                                                | 1056351.2596<br>1056351.2596<br>6693618.3533<br>6693618.3505<br>6693618.3505<br>6693618.3505<br>6693618.3505<br>N 60°<br>667294.8211<br>667294.8211<br>667294.8211                | 880225.3216<br>880225.3215<br>7797150.9893<br>7797150.9899<br>7797150.9899<br>7797150.9899<br>7797150.9899<br>N 70°<br>614473.7147<br>614473.7147<br>614473.7147                                                |
| у<br>х           | $   \begin{array}{r}     9 \\     11 \\     6 \\     8 \\     10 \\     12 \\     \hline     2=3^{\circ} \\     \hline     5 \\     7 \\     9 \\     11 \\   \end{array} $ | 1550165.3069<br>1550165.3068<br>2243050.5510<br>2243050.5818<br>2243050.5820<br>2243050.5820<br>N 20°<br>813926.3204<br>813926.3204<br>813926.3204<br>813926.3204                                                                | 1466939.6923<br>1466939.6922<br>3361248.7421<br>3361248.7524<br>3361248.7523<br>3361248.7523<br>N 30°<br>789409.6533<br>789409.6532<br>789409.6532<br>789409.6532                                 | 1354342.8422<br>1354342.8422<br>4475948.5573<br>4475948.5496<br>4475948.5494<br>4475948.5494<br>4475948.5494<br>N 40°<br>756099.6480<br>756099.6480<br>756099.6480<br>756099.6480                                 | 1216025.3170<br>1216025.3170<br>5586720.8540<br>5586720.8446<br>5586720.8446<br>5586720.8446<br>N 50°<br>714984.2368<br>714984.2367<br>714984.2367<br>714984.2367                                                 | 1056351.2596<br>1056351.2596<br>6693618.3533<br>6693618.3505<br>6693618.3505<br>6693618.3505<br>N 60°<br>667294.8211<br>667294.8211<br>667294.8211                                | 880225.3216<br>880225.3215<br>7797150.9893<br>7797150.9899<br>7797150.9899<br>7797150.9899<br>N 70°<br>614473.7147<br>614473.7147<br>614473.7147<br>614473.7147                                                 |
| у<br><br>        | $9 \\ 11 \\ 6 \\ 8 \\ 10 \\ 12 \\ R=3^{\circ} \\ 5 \\ 7 \\ 9 \\ 11 \\ 6 \\ $                                                                                                | 1550165.3069<br>1550165.3068<br>2243050.5510<br>2243050.5818<br>2243050.5820<br>2243050.5820<br>N 20°<br>813926.3204<br>813926.3204<br>813926.3204<br>813926.3204<br>813926.3204                                                 | 1466939.6923<br>1466939.6922<br>3361248.7421<br>3361248.7524<br>3361248.7523<br>3361248.7523<br>N 30°<br>789409.6533<br>789409.6532<br>789409.6532<br>789409.6532<br>3322575.9044                 | 1354342.8422<br>1354342.8422<br>4475948.5573<br>4475948.5496<br>4475948.5494<br>4475948.5494<br>N 40°<br>756099.6480<br>756099.6480<br>756099.6480<br>756099.6480<br>4432069.0569                                 | 1216025.3170<br>1216025.3170<br>5586720.8540<br>5586720.8446<br>5586720.8446<br>5586720.8446<br>N 50°<br>714984.2368<br>714984.2367<br>714984.2367<br>714984.2367<br>5542944.0186                                 | 1056351.2596<br>1056351.2596<br>6693618.3503<br>6693618.3505<br>6693618.3505<br>6693618.3505<br>N 60°<br>667294.8211<br>667294.8211<br>667294.8211<br>667294.8211<br>6655205.4836 | 880225.3216<br>880225.3215<br>7797150.9893<br>7797150.9899<br>7797150.9899<br>7797150.9899<br>N 70°<br>614473.7147<br>614473.7147<br>614473.7147<br>614473.7147<br>7768690.1088                                 |
| у<br><br>        | $9 \\ 11 \\ 6 \\ 8 \\ 10 \\ 12 \\ = 3^{\circ} \\ 5 \\ 7 \\ 9 \\ 11 \\ 6 \\ 8 \\ 8 \\ 8 \\ 9 \\ 11 \\ 6 \\ 8 \\ 8 \\ 9 \\ 11 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$      | 1550165.3069<br>1550165.3068<br>2243050.5510<br>2243050.5818<br>2243050.5820<br>2243050.5820<br>N 20°<br>813926.3204<br>813926.3204<br>813926.3204<br>813926.3204<br>2214294.0263<br>2214294.0263                                | 1466939.6923<br>1466939.6922<br>3361248.7524<br>3361248.7524<br>3361248.7523<br>3361248.7523<br>N 30°<br>789409.6533<br>789409.6532<br>789409.6532<br>789409.6532<br>3322575.9044<br>3322575.9044 | 1354342.8422<br>1354342.8422<br>4475948.5573<br>4475948.5496<br>4475948.5494<br>4475948.5494<br>N 40°<br>756099.6480<br>756099.6480<br>756099.6480<br>756099.6480<br>4432069.0569<br>4432069.0569                 | 1216025.3170<br>1216025.3170<br>5586720.8540<br>5586720.8446<br>5586720.8446<br>5586720.8446<br>N 50°<br>714984.2368<br>714984.2367<br>714984.2367<br>714984.2367<br>5542944.0186                                 | 1056351.2596<br>1056351.2596<br>6693618.3503<br>6693618.3505<br>6693618.3505<br>6693618.3505<br>N 60°<br>667294.8211<br>667294.8211<br>667294.8211<br>667294.8211<br>6655205.4836 | 880225.3216<br>880225.3215<br>7797150.9893<br>7797150.9899<br>7797150.9899<br>7797150.9899<br>N 70°<br>614473.7147<br>614473.7147<br>614473.7147<br>614473.7147<br>7768690.1088<br>7768690.1088                 |
| у<br><br><br>    | $9 \\ 11 \\ 6 \\ 8 \\ 10 \\ 12 \\ 8 = 3^{\circ} \\ 5 \\ 7 \\ 9 \\ 11 \\ 6 \\ 8 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$                                             | 1550165.3069<br>1550165.3068<br>2243050.5510<br>2243050.5818<br>2243050.5820<br>2243050.5820<br>N 20°<br>813926.3204<br>813926.3204<br>813926.3204<br>813926.3204<br>813926.3204<br>2214294.0263<br>2214294.0263<br>2214294.0263 | 1466939.6923<br>1466939.6922<br>3361248.7421<br>3361248.7524<br>3361248.7523<br>3361248.7523<br>N 30°<br>789409.6533<br>789409.6532<br>789409.6532<br>789409.6532<br>3322575.9044<br>3322575.9044 | 1354342.8422<br>1354342.8422<br>4475948.5573<br>4475948.5496<br>4475948.5494<br>4475948.5494<br>4475948.5494<br>N 40°<br>756099.6480<br>756099.6480<br>756099.6480<br>756099.6480<br>4432069.0569<br>4432069.0569 | 1216025.3170<br>1216025.3170<br>5586720.8540<br>5586720.8446<br>5586720.8446<br>5586720.8446<br>5586720.8446<br>N 50°<br>714984.2368<br>714984.2367<br>714984.2367<br>714984.2367<br>5542944.0186<br>5542944.0186 | 1056351.2596<br>1056351.2596<br>6693618.3503<br>6693618.3505<br>6693618.3505<br>N 60°<br>667294.8211<br>667294.8211<br>667294.8211<br>667294.8211<br>6655205.4836<br>6655205.4836 | 880225.3216<br>880225.3215<br>7797150.9893<br>7797150.9899<br>7797150.9899<br>7797150.9899<br>N 70°<br>614473.7147<br>614473.7147<br>614473.7147<br>614473.7147<br>7768690.1088<br>7768690.1088<br>7768690.1088 |

 $\phi_1$ 은 기존 문헌(Thomson, 1952; DMA, 1989)에서 "footprint" 위도라 불리며 본 논문에서는 이를 계산하기 위해 Newton-Raphson 방법을 이용한다. 그러면 이는 함수  $f(\phi) = y_1$ - $\int_0^{\theta} Rd\xi = 0$ 을 만족하는  $\phi$ 를 구하는 문제와 같아 다음 식 으로 표현된다.

$$\phi^{n} = \phi^{n-1} + \frac{y_1 - S(\phi^{n-1})}{R(\phi^{n-1})}, n = 1, 2, \dots$$
(17)

여기서 위 첨자 n은 반복 회수를 의미하며 S(Ø<sup>n-1</sup>)과 그 미분인 R(Ø<sup>n-1</sup>)은 식 (6)와 식(3)로부터 각각 구할 수 있 식 (16)에서 x를 변수로 취급하여 f(z)를 z = iy에서 Taylor 전개하면 식 (18)이 된다.

$$\lambda + i\tau = f(iy) + \frac{x}{1!dz} \frac{df}{dz} + \frac{x^2}{2!dz^2} \frac{d^2f}{dz^2} + \frac{x^3}{3!dz^3} \frac{d^3f}{dz^3} + \dots$$
(18)

그리고 dz = idy, y = S 그리고 i τ = f(iy) 이므로 다음 관

서승남



계식을 얻을 수 있다.

$$\frac{df}{dz} = \frac{d}{dS} [f(iy)] \frac{dS}{dz} = \frac{d}{dS} [i\tau] \frac{1}{i} \equiv \tau^{(1)}$$
$$\frac{d^2 f}{dz^2} = \frac{d}{dS} [\tau^{(1)}] \frac{dS}{dz} = \tau^{(2)} \frac{1}{i} = -i\tau^{(2)}, \dots$$
(19)

식 (12), (5)와 (7)을 이용하면 식 (19)의 우변 항들은 다 음 식 (20)이 된다.

$$\frac{d\tau}{dS} = \tau^{(1)} = \frac{1}{N\cos\phi}$$
$$\tau^{(2)} = \frac{d}{d\phi} \left(\frac{1}{N\cos\phi}\right) \frac{d\phi}{dS} = \frac{\tan\phi}{N^2\cos\phi}, \dots$$
(20)

이제 <sub>Y1</sub>에 대응되는 φ1에서 구한 등거리 위도(isometric latitude) τ(φ1)를 τ1이라 표기하고 식 (19), (20)를 식 (18)에 대입한 후 복소수 상등관계를 이용하여 정리하면 식 (21) 을 얻게 된다.

$$\lambda = x \tau_1^{(1)} - \frac{x^3}{3!} \tau_1^{(3)} + \frac{x^5}{5!} \tau_1^{(5)} - \frac{x^7}{7!} \tau_1^{(7)} + \frac{x^9}{9!} \tau_1^{(9)} - \dots$$
$$\lambda = \tau_1 - \frac{x^2}{2!} \tau_1^{(2)} + \frac{x^4}{4!} \tau_1^{(4)} - \frac{x^6}{6!} \tau_1^{(6)} + \frac{x^8}{8!} \tau_1^{(8)} - \dots$$
(21)

식 (21)를 변형하여 위경도의 증분으로 나타내고자 식 (20)을 대입하여 정리하면 식 (22)를 얻을 수 있다.

$$\Delta \lambda = \frac{1}{\cos \phi_1} \left[ \frac{(x/N)}{1!} \tau_1^{*(1)} - \frac{(x/N)^3}{3!} \tau_1^{*(3)} + \frac{(x/N)^5}{5!} \tau_1^{*(5)} - \cdots \right]$$
  
$$\tau - \tau_1 \equiv \Delta \tau = \frac{1}{\cos \phi_1} \left[ -\frac{(x/N)^2}{2!} \tau_1^{*(2)} + \frac{(x/N)^4}{4!} \tau_1^{*(4)} - \cdots \right]$$
(22)

식 (22) 우변의 미분항들은 미분차수가 증가함에 따라 항

의 개수가 급격히 증가함을 식 (20)에서 유추할 수 있다. 이 를 풀어쓰는 대신 식 (23)과 같이 간단히 나타낼 수도 있다.

$$\tau_{1}^{*(1)} = \sum_{k=1}^{[n/2]} T_{n} \tan^{2(k-1)} \phi_{1} \sum_{m=0}^{n-2} c_{k,m} \sigma^{m}$$
(23a)  
$$T_{n} = \begin{cases} 1 & , n = odd \\ \tan \phi_{1}, n = even \end{cases}$$
(23b)

Table 6에 식 (23a)의 미분 계수  $c_{k,m}$ 을 정리하였고 [n/2]는 반올림한 정수이며 상한 "n-2"는 2보다 작은 경우에는 0이다. 제시된 8차까지의 상수는 Thomas(1952)의 결과와 동일하며 *T*는 tan¢,을 의미한다.

식 (12)에서 알 수 있듯이 복소평면 좌표인 등거리 위 도(isometric latitude) r는 측지위도(geodetic latitude) Ø 와 다르다. 앞에서 구한 r를 Ø로 변환하기 위해 식 (24) 와 같이 Taylor 전개하여 계산한다.

$$\Delta \phi = \Delta \tau \frac{d\phi}{d\tau} + \frac{(\Delta \tau)^2}{2!} \frac{d^2 \phi}{d\tau^2} + \frac{(\Delta \tau)^3}{3!} \frac{d^3 \phi}{d\tau^3} + \frac{(\Delta \tau)^4}{4!} \frac{d^4 \phi}{d\tau^4} + \dots$$
(24)

식 (24)의 우변의 *r*에 대한 미분은 식 (7)과 (12)를 이용 하여 정리하면 식 (25)와 같다.

$$\frac{d\phi}{d\tau} = \sigma \cos\phi$$

$$\frac{d^2\phi}{d\tau^2} = \sigma \tan\phi \cos^2\phi(2-3\sigma)$$

$$\frac{d^3\phi}{d\tau^3} = \sigma \cos^3\phi[(15\sigma^2 - 18\sigma + 4)\tan^2\phi - 3\sigma^2 + 2\sigma]$$

$$\frac{d^4\phi}{d\tau^4} = -\sigma \tan\phi \cos^4\phi \begin{bmatrix} (105\sigma^3 - 180\sigma^2 + 84\sigma - 8)\tan^2\phi \\ -57\sigma^3 + 68\sigma^2 - 16\sigma \end{bmatrix}$$

$$\frac{d^5\phi}{d\tau^5} =$$

$$\sigma \cos^5\phi \begin{bmatrix} (945\sigma^4 - 2100\sigma^3 + 1500\sigma^2 - 360\sigma + 16)\tan^4\phi \\ + (-942\sigma^4 + 1608\sigma^3 - 772\sigma^2 + 88\sigma)\tan^2\phi \\ + 57\sigma^4 + 68\sigma^3 + 16\sigma^2 \end{bmatrix}$$

$$\frac{d^6\phi}{d\tau^6} = -\sigma \tan\phi \cos^6\phi \times$$

$$\begin{bmatrix} (10395\sigma^{5}-28350\sigma^{4}+27300\sigma^{3}-10800\sigma^{2}+1488\sigma-32)\tan^{4}\phi \\ +(-16026\sigma^{5}+35508\sigma^{4}-25812\sigma^{3}+6688\sigma^{2}-416\sigma)\tan^{2}\phi \\ +2739\sigma^{5}-4670\sigma^{4}+2264\sigma^{3}-272\sigma^{2} \end{bmatrix}$$
(25)

식 (22)와 식 (25)를 식 (24)에 대입하여 (*x/N*)<sup>12</sup>까지만 정리하면 식 (26)을 얻고 여기서 *X*는 *x/N*을 의미한다.



|                    |                | $\sigma^{_0}$ | $\sigma^1$ | $\sigma^2$      | $\sigma^3$                                            | $\sigma^4$                                | $\sigma^5$    |
|--------------------|----------------|---------------|------------|-----------------|-------------------------------------------------------|-------------------------------------------|---------------|
| $	au^{*(1)}$       | $T^0$          | 1             |            |                 |                                                       |                                           |               |
| $\tau^{*(2)}$      | $T^0$          | 1             |            |                 |                                                       |                                           |               |
| _*(3)              | $T^0$          | 2             | 0          |                 |                                                       |                                           |               |
| $\tau^{(0)}$       | $T^2$          | 0             | 1          |                 |                                                       |                                           |               |
| *(1)               | $T^0$          | 0             | 9          | -4              |                                                       |                                           |               |
| $\tau^{(4)}$       | $T^2$          | 6             | 0          | 0               |                                                       |                                           |               |
|                    | $T^0$          | 0             | 0          | 9               | -4                                                    |                                           |               |
| $\tau^{*(5)}$      | $T^2$          | 0             | 72         | -68             | 24                                                    |                                           |               |
|                    | $T^4$          | 24            | 0          | 0               | 0                                                     |                                           |               |
|                    | $T^0$          | 0             | 0          | 225             | -252                                                  | 88                                        |               |
| $	au^{*(6)}$       | $T^2$          | 0             | 600        | -900            | 672                                                   | -192                                      |               |
|                    | $T^4$          | 120           | 0          | 0               | 0                                                     | 0                                         |               |
|                    | $T^0$          | 0             | 0          | 0               | 225                                                   | -252                                      | 88            |
| *(7)               | $T^2$          | 0             | 0          | 4050            | -7524                                                 | 5768                                      | -1632         |
| $\tau^{*(\prime)}$ | $T^4$          | 0             | 5400       | -11400          | 13464                                                 | -8064                                     | 1920          |
|                    | $T^6$          | 720           | 0          | 0               | 0                                                     | 0                                         | 0             |
|                    | $T^0$          | 0             | 0          | 0               | 11025                                                 | -21528                                    | 16560         |
| $	au^{*(8)}$       | $T^2$          | 0             | 0          | 66150           | -175812                                               | 215616                                    | -129216       |
|                    | $T^4$          | 0             | 52920      | -147000         | 243432                                                | -228672                                   | 113280        |
|                    | $T^6$          | 5040          | 0          | 0               | 0                                                     | 0                                         | 0             |
|                    | $T^0$          | 0             | 0          | 0               | 0                                                     | 11025                                     | -21528        |
|                    | $T^2$          | 0             | 0          | 0               | 352800                                                | -1004184                                  | 1246320       |
| $	au^{*(9)}$       | $T^4$          | 0             | 0          | 1058400         | -3725568                                              | 6425136                                   | -6056640      |
|                    | $T^6$          | 0             | 564480     | -1975680        | 4290048                                               | -5606208                                  | 4325760       |
|                    | $T^8$          | 40320         | 0          | 0               | 0                                                     | 0                                         | 0             |
|                    | $T^0$          | 0             | 0          | 0               | 0                                                     | 893025                                    | -2593800      |
|                    | $T^2$          | 0             | 0          | 0               | 9525600                                               | -36207000                                 | 63439200      |
| $\tau^{*(10)}$     | $T^4$          | 0             | 0          | 17146080        | -76204800                                             | 172223280                                 | -225815040    |
|                    | $T^6$          | 0             | 6531840    | -27941760       | 76204800                                              | -129625920                                | 138251520     |
|                    | $T^8$          | 362880        | 0          | 0               | 0                                                     | 0                                         | 0             |
|                    | $T^0$          | 0             | 0          | 0               | 0                                                     | 0                                         | 893025        |
|                    | $T^2$          | 0             | 0          | 0               | 0                                                     | 44651250                                  | -174785400    |
|                    | $T^4$          | 0             | 0          | 0               | 238140000                                             | -1147057200                               | 2636798400    |
| $\tau^{*(11)}$     | $T^6$          | 0             | 0          | 285768000       | -1552037760                                           | 4395500640                                | -7490361600   |
|                    | $T^8$          | 0             | 81648000   | -417312000      | 1386927360                                            | -2942904960                               | 4061289600    |
|                    | $T^{10}$       | 3628800       | 0          | 0               | 0                                                     | 0                                         | 0             |
|                    | T <sup>0</sup> | 0             | 0          | 0               | 0                                                     | 0                                         | 108056025     |
|                    | $T^2$          | 0             | 0          | 0               | 0                                                     | 1800933750                                | -8973142200   |
|                    | $T^4$          | 0             | 0          | 0               | 5762988000                                            | -33963993360                              | 97804571040   |
| $\tau^{*(12)}$     | $T^{6}$        | 0             | 0          | 4939704000      | -32009281920                                          | 110130308640                              | -233586840960 |
|                    | 7<br>78        | 0             | 1097712000 | -6586272000     | 26081637120                                           | -67010613120                              | 114716131200  |
|                    | $T^{10}$       | 39916800      | 0          | 0500272000<br>N | 0                                                     | 0,010013120                               | n             |
|                    | 1              | 57710000      | 0          | 0               | 0                                                     | 0                                         | 0             |
| $\Delta \phi =$    |                |               |            |                 | $u = \sigma T \left( \sum_{n=1}^{n} \tan^{n} \right)$ | $2^k \phi \sum_{k=0}^{2n} c_k \sigma^{m}$ | (26h          |

 Table 6a. Coefficients of differential terms in Eq. (22)

 $u_{n} = \sigma T \left( \sum_{k=0}^{n} \tan^{2k} \phi_{1} \sum_{m=0}^{2n} c_{k,m} \sigma^{m} \right)$ (26b)

$$\frac{u_0 X^2}{2} + \frac{u_1 X^4}{24} + \frac{u_2 X^6}{720} + \frac{u_3 X^8}{40320} + \frac{u_4 X^{10}}{3628800} + \frac{u_5 X^{12}}{479001600}$$
(26a)

식 (26b)의 계수  $c_{k,m}$ 를 Table 7에 정리하였고 T는  $an \phi_1$ 을 의미한다. 표에서  $u_3$ 이하의 차수는 기존 결과에 해당

서승남

 Table 6b. (Continued) Coefficients of differential terms in Eq. (22)

|               |          | $\sigma^{_6}$ | $\sigma^7$    | $\sigma^8$    | $\sigma^9$   | $\sigma^{10}$ |
|---------------|----------|---------------|---------------|---------------|--------------|---------------|
|               | $T^0$    | -4672         |               |               |              |               |
| <b>~</b> *(8) | $T^2$    | 30528         |               |               |              |               |
| 1 (-)         | $T^4$    | -23040        |               |               |              |               |
|               | $T^6$    | 0             |               |               |              |               |
|               | $T^0$    | 16560         | -4672         |               |              |               |
|               | $T^2$    | -746048       | 175680        |               |              |               |
| $	au^{*(9)}$  | $T^4$    | 2985984       | -603648       |               |              |               |
|               | $T^6$    | -1820160      | 322560        |               |              |               |
|               | $T^8$    | 0             | 0             |               |              |               |
|               | $T^0$    | 3227904       | -1930752      | 454144        |              |               |
|               | $T^2$    | -59834688     | 29413440      | -5928192      |              |               |
| $	au^{*(10)}$ | $T^4$    | 173453184     | -72580608     | 12801024      |              |               |
|               | $T^6$    | -90132480     | 32901120      | -5160960      |              |               |
|               | $T^8$    | 0             | 0             | 0             |              |               |
|               | $T^0$    | -2593800      | 3227904       | -1930752      | 454144       |               |
|               | $T^2$    | 308019888     | -290400192    | 142524608     | -28684032    |               |
| -*(11)        | $T^4$    | -3460465536   | 2650212864    | -1105304832   | 194425344    |               |
| $\tau$ ()     | $T^6$    | 7945141248    | -5148112896   | 1869585408    | -292147200   |               |
|               | $T^8$    | -3641932800   | 2051481600    | -660602880    | 92897280     |               |
|               | $T^{10}$ | 0             | 0             | 0             | 0            |               |
|               | $T^0$    | -427088700    | 753800976     | -710400384    | 348418944    | -70084096     |
|               | $T^2$    | 20777788224   | -27262264704  | 20837820096   | -8673646848  | 1523486208    |
| -*(12)        | $T^4$    | -166721651328 | 176214548736  | -113736165120 | 41172553728  | -6419091456   |
| $\tau$ (12)   | $T^6$    | 320093627904  | -284960544768 | 159556690944  | -51148800000 | 7170416640    |
|               | $T^8$    | -132499929600 | 102274099200  | -50659983360  | 14584872960  | -1857945600   |
|               | $T^{10}$ | 0             | 0             | 0             | 0            | 0             |

하며 제시된 값은 Thomas(1952)의 결과와 동일하다. 앞에서 유도한 식을 정리하여 주어진 직교좌표(x, y)를 등각 투영하여 (x/N)<sup>12</sup>까지 경위도 좌표(λ, φ)로 변환하는 식들은 다음 식 (27)이 된다.

$$\begin{split} \lambda &= \lambda_o + \frac{1}{\cos\phi_1} \begin{bmatrix} \frac{X}{1!} \tau_1^{*(1)} - \frac{X^3}{3!} \tau_1^{*(3)} + \frac{X^5}{5!} \tau_1^{*(5)} \\ -\frac{X^7}{7!} \tau_1^{*(7)} + \frac{X^9}{9!} \tau_1^{*(9)} - \frac{X^{11}}{11!} \tau_1^{*(11)} \end{bmatrix} \\ \phi &= \phi_o + \frac{u_0 X^2}{2} + \frac{u_1 X^4}{24} + \frac{u_2 X^6}{720} + \frac{u_3 X^8}{40320} \\ + \frac{u_4 X^{10}}{3628800} + \frac{u_5 X^{12}}{479001600} \end{split}$$
(27)

여기서  $\phi_1$ 은 식 (17)에서 구한  $\phi^n$ 이며 식 (15)에 기술된 좌표의 평행 이동량  $x_o$ 과 축척계수  $m_o$ 을 포함하는 경우에는  $X = (x - x_o)/(m_o N)$ 로 다시 정의되어야 한다.  $\tau_1^{*(n)}$ 은 식 (23), u<sub>n</sub>은 식 (26)으로부터 각각 계산하며 식들과 연 관된 위도는 ∮을 사용한다.

식 (27)을 이용하여 주어진 UTM 좌표를 WGS84 경 위도 좌표로 계산한 결과를 Table 8에 나타내었다. 입 력 경위도 좌표는 Table 5에 제시한 12차로 계산한 값 을 사용하였으며 Table 8에서 전개 차수의 증가에 따른 정확도의 증가와 계산값의 수렴을 알 수 있다. 참고로 표에서 도(°) 단위로 표시된 1E-8을 초 단위로 변환하 면 소수점 아래 5자리에 해당되며 중심자오선에서 좌우 14°내의 구역에 대해 12개 항을 이용한 경위도 변환은 초 단위로 표시된 값의 소수점 아래 4까지의 정밀도를 보인다.

## 3. 한반도 주변의 UTM 격자수심

본 절에서는 식 (15)를 이용하여 UTM 좌표계로 표시 한 서해와 동해의 수심도를 나타내었다. 좌표변환을 위한

|                |          | $\sigma^{_0}$ | $\sigma^1$ | $\sigma^2$   | $\sigma^3$   | $\sigma^4$    | $\sigma^5$    |
|----------------|----------|---------------|------------|--------------|--------------|---------------|---------------|
| u <sub>0</sub> | $T^0$    | -1            |            |              |              |               |               |
|                | $T^0$    | 0             | 9          | -4           |              |               |               |
| $u_1$          | $T^2$    | 12            | -9         | 0            |              |               |               |
|                | $T^0$    | 0             | 0          | -225         | 252          | -88           |               |
| $u_2$          | $T^2$    |               | -900       | 1470         | -852         | 192           |               |
|                | $T^4$    | -360          | 540        | -225         | 0            | 0             |               |
|                | $T^0$    | 0             | 0          | 0            | 11025        | -21528        | 16560         |
|                | $T^2$    | 0             | 0          | 88200        | -229719      | 252912        | -138288       |
| $u_3$          | $T^4$    | 0             | 105840     | -310800      | 411159       | -308472       | 129408        |
|                | $T^6$    | 20160         | -45360     | 37800        | -11025       | 0             | 0             |
|                | $T^0$    | 0             | 0          | 0            | 0            | -893025       | 2593800       |
|                | $T^2$    | 0             | 0          | 0            | -11907000    | 43591500      | -71565480     |
| $u_4$          | $T^4$    | 0             | 0          | -28576800    | 121315320    | -241767270    | 282582360     |
|                | $T^6$    | 0             | -16329600  | 71064000     | -153596520   | 209971980     | -189893880    |
|                | $T^8$    | -1814400      | 5443200    | -6804000     | 3969000      | -893025       | 0             |
|                | $T^0$    | 0             | 0          | 0            | 0            | 0             | 108056025     |
|                | $T^2$    | 0             | 0          | 0            | 0            | 2161120500    | -10359040725  |
|                | $T^4$    | 0             | 0          | 0            | 8644482000   | -47917481040  | 126393259410  |
| $u_5$          | $T^6$    | 0             | 0          | 9879408000   | -59631208560 | 178233822360  | -333321665490 |
|                | $T^8$    | 0             | 3293136000 | -19359648000 | 59840771760  | -123390170640 | 179255860245  |
|                | $T^{10}$ | 239500800     | -898128000 | 1496880000   | -1309770000  | 589396500     | -108056025    |

 Table 7a. Coefficients in Eq. (26)

Table 7b. (Continued) Coefficients in Eq. (26)

|       |          | $\sigma^{_6}$ | $\sigma^7$    | $\sigma^8$    | $\sigma^9$   | $\sigma^{10}$ |
|-------|----------|---------------|---------------|---------------|--------------|---------------|
|       | $T^0$    | -4672         |               |               |              |               |
|       | $T^2$    | 30528         |               |               |              |               |
| $u_3$ | $T^4$    | -23040        |               |               |              |               |
|       | $T^6$    | 0             |               |               |              |               |
|       | $T^0$    | -3227904      | 1930752       | -454144       |              |               |
|       | $T^2$    | 64014528      | -30265920     | 5928192       |              |               |
| $u_4$ | $T^4$    | -198321984    | 77185728      | -12801024     |              |               |
|       | $T^6$    | 109313280     | -36011520     | 5160960       |              |               |
|       | $T^8$    | 0             | 0             | 0             |              |               |
|       | $T^0$    | -427088700    | 753800976     | -710400384    | 348418944    | -70084096     |
|       | $T^2$    | 22904436528   | -28977013872  | 21564550848   | -8802052224  | 1523486208    |
|       | $T^4$    | -199686913416 | 198772883568  | -122318986752 | 42574507776  | -6419091456   |
| $u_5$ | $T^6$    | 413345578608  | -339770573712 | 178023476160  | -53871353856 | 7170416640    |
|       | $T^8$    | -183068830620 | 128087153280  | -58368867840  | 15606743040  | -1857945600   |
|       | $T^{10}$ | 0             | 0             | 0             | 0            | 0             |

입력자료는 한국 주변해역에 대한 30초 간격의 격자수심 을 WGS84 좌표계로 작성한 서(2008)의 자료로 인터넷 에 공개된 자료(KorBathy30s, 2008)이다. 이 자료는 서해 의 경우 동경 117°에서 131°, 북위 30°에서 44°의 범위 내의 수심 또는 표고를 경위도 각각 1° 간격으로 저장된 자료만으로 구성되었다. 서해의 UTM 변환에 필요한 중 심자오선은 동경 124°로 정하였다. 반면 동해의 경우에는 동경 127°에서 143°, 북위 30°에서 44°의 범위로 중심자 오선은 동경 135°를 선정하였다.

경위도 좌표를 UTM 좌표로 변환하면 고위도로 갈수

| 2      | レムェ | ٦. |
|--------|-----|----|
| $\sim$ | 51  | Ŧ  |

| Table 8. Computations of geodetic long | gitude and latitude transformatic | on in degrees for different 1 | number of terms in Eq. | (27) based on |
|----------------------------------------|-----------------------------------|-------------------------------|------------------------|---------------|
| WGS84 ellipsoid                        |                                   |                               |                        |               |

| $\lambda + 14^{\circ}$     |    | N 20°      | N 30°      | N 40°      | N 50°      | N $60^{\circ}$ | N 70°      |
|----------------------------|----|------------|------------|------------|------------|----------------|------------|
| Δλ                         | 5  | 7.693E-05  | 1.246E-04  | 1.886E-04  | 2.634E-04  | 3.397E-04      | 4.061E-04  |
|                            | 7  | -2.131E-06 | -4.074E-06 | -6.994E-06 | -1.076E-05 | -1.494E-05     | -1.881E-05 |
|                            | 9  | 6.323E-08  | 1.408E-07  | 2.730E-07  | 4.629E-07  | 6.916E-07      | 9.168E-07  |
|                            | 11 | -1.709E-09 | -4.989E-09 | -1.113E-08 | -2.062E-08 | -3.311E-08     | -4.624E-08 |
| Δφ                         | 6  | -8.51E-06  | -1.12E-05  | -1.28E-05  | -1.32E-05  | -1.23E-05      | -9.55E-06  |
|                            | 8  | 2.24E-07   | 3.22E-07   | 4.12E-07   | 4.76E-07   | 4.80E-07       | 3.96E-07   |
|                            | 10 | -6.13E-09  | -9.88E-09  | -1.44E-08  | -1.85E-08  | -2.03E-08      | -1.77E-08  |
|                            | 12 | 1.54E-10   | 3.35E-10   | 5.42E-10   | 7.59E-10   | 8.96E-10       | 8.26E-10   |
| $\lambda_{o} + 12^{\circ}$ |    | N 20°      | N 30°      | N 40°      | N 50°      | N 60°          | N 70°      |
| Δλ                         | 5  | 2.56E-05   | 4.13E-05   | 6.25E-05   | 8.72E-05   | 1.E-04         | 1.E-04     |
|                            | 7  | -5.17E-07  | -9.84E-07  | -1.69E-06  | -2.59E-06  | -3.60E-06      | -4.53E-06  |
|                            | 9  | 1.12E-08   | 2.48E-08   | 4.79E-08   | 8.11E-08   | 1.21E-07       | 1.61E-07   |
|                            | 11 | -2.18E-10  | -6.38E-10  | -1.42E-09  | -2.63E-09  | -4.22E-09      | -5.89E-09  |
| Δφ                         | 6  | -2.42E-06  | -3.19E-06  | -3.64E-06  | -3.77E-06  | -3.48E-06      | -2.72E-06  |
|                            | 8  | 4.66E-08   | 6.68E-08   | 8.54E-08   | 9.85E-08   | 9.92E-08       | 8.20E-08   |
|                            | 10 | -9.28E-10  | -1.49E-09  | -2.17E-09  | -2.79E-09  | -3.04E-09      | -2.66E-09  |
|                            | 12 | 1.70E-11   | 3.69E-11   | 5.94E-11   | 8.30E-11   | 9.79E-11       | 9.03E-11   |
| $\lambda_o + 10^{\circ}$   |    | N 20°      | N 30°      | N 40°      | N 50°      | N 60°          | N 70°      |
| Δλ                         | 5  | 7.02E-06   | 1.13E-05   | 1.71E-05   | 2.38E-05   | 3.07E-05       | 3.68E-05   |
|                            | 7  | -9.76E-08  | -1.85E-07  | -3.17E-07  | -4.87E-07  | -6.77E-07      | -8.52E-07  |
|                            | 9  | 1.45E-09   | 3.22E-09   | 6.21E-09   | 1.05E-08   | 1.57E-08       | 2.08E-08   |
|                            | 11 | -1.95E-11  | -5.71E-11  | -1.27E-10  | -2.34E-10  | -3.76E-10      | -5.25E-10  |
| $\Delta \phi$              | 6  | -5.53E-07  | -7.27E-07  | -8.30E-07  | -8.58E-07  | -7.94E-07      | -6.19E-07  |
|                            | 8  | 7.33E-09   | 1.05E-08   | 1.34E-08   | 1.54E-08   | 1.56E-08       | 1.29E-08   |
|                            | 10 | -1.01E-10  | -1.62E-10  | -2.34E-10  | -3.01E-10  | -3.29E-10      | -2.87E-10  |
|                            | 12 | 1.26E-12   | 2.77E-12   | 4.44E-12   | 6.16E-12   | 7.28E-12       | 6.72E-12   |
| $\lambda_o + 3^\circ$      |    | N 20°      | N 30°      | N 40°      | N 50°      | N 60°          | N 70°      |
| Δλ                         | 5  | 1.48E-09   | 2.37E-09   | 3.57E-09   | 4.98E-09   | 6.42E-09       | 7.69E-09   |
|                            | 7  | -1.85E-12  | -3.44E-12  | -5.88E-12  | -9.01E-12  | -1.25E-11      | -1.58E-11  |
|                            | 9  | 0          | 0          | 0          | 2.84E-14   | 2.84E-14       | 2.84E-14   |
|                            | 11 | 0          | 0          | 0          | 0          | 0              | 0          |
| ∆ø                         | 6  | -3.49E-11  | -4.58E-11  | -5.22E-11  | -5.40E-11  | -4.99E-11      | -3.89E-11  |
|                            | 8  | 4.26E-14   | 8.17E-14   | 7.82E-14   | 7.82E-14   | 8.53E-14       | 8.53E-14   |
|                            | 10 | 0          | 2.49E-14   | 0          | -1.42E-14  | -7.11E-15      | 1.42E-14   |
|                            | 12 | 0          | 2.49E-14   | 0          | -1.42E-14  | -7.11E-15      | 1.42E-14   |

록 동일 경도차에 의한 거리는 줄어들게 되고 중심자오 선에서의 호의 길이가 가장 작게 된다. 한편 서(2008)의 자료는 수심에 초점이 맞춰졌기 때문에 육상 표고자료만 으로 구성된 경우에는 자료가 존재하지 않는다. 이러한 경 우에는 DTED(2004)의 경위도 표고자료를 입력 자료에 추가하여 500m 등간격으로 내삽하였다. Table 9에 서 (2008)의 주요 지점에서 식 (15)로 변환한 UTM 좌표를 정리하였고 좌표의 평행 이동량  $x_o$ ,  $y_o$ 는 모두 0, 축척계 수 m 는 0.9996을 사용하였다.

Fig. 3에는 서(2008)의 WGS84 좌표계로 표시된 격자 수심도와 이를 입력자료로 사용하여 500 m 등간격으로 내 삽한 UTM 좌표계로 표시된 수심도를 Fig. 4에 각각 나 타내었다. Fig. 4에서 위도선은 곡선임을 알 수 있으며 이 자료는 황해의 조석모형과 동해의 지진해일 수치모형 등 에 사용할 수 있다.

| Table 9. UTM coordinate conversion for representative points in Seo(2008) |            |            |           |            |            |  |  |  |  |  |
|---------------------------------------------------------------------------|------------|------------|-----------|------------|------------|--|--|--|--|--|
| 서케 WCC04                                                                  | UTM (m)    |            | 러케 WC694  | UTM (m)    |            |  |  |  |  |  |
| ^ ºf  ₩G384                                                               | x          | У          | 시에 WG584  | x          | У          |  |  |  |  |  |
| E117°N44°                                                                 | -561266.92 | 4895750.60 | E131°N30° | 675979.27  | 3339497.10 |  |  |  |  |  |
| E131°N44°                                                                 | 561266.92  | 4895750.60 | E117°N30° | -675979.27 | 3339497.10 |  |  |  |  |  |
| E124°N44°                                                                 | 0.00       | 4871872.84 | E124°N30° | 0.00       | 3318785.35 |  |  |  |  |  |
| 도체 WCC04                                                                  | UTM (m)    |            | 도케 WC694  | UTM (m)    |            |  |  |  |  |  |
| 5 of WU304                                                                | x          | У          | তণ WU384  | x          | У          |  |  |  |  |  |
| E127°N44°                                                                 | -641463.33 | 4903085.27 | E127°N30° | -772843.22 | 3345873.95 |  |  |  |  |  |
| E143°N44°                                                                 | 641463.33  | 4903085.27 | E143°N30° | 772843.22  | 3345873.95 |  |  |  |  |  |
| E135°N44°                                                                 | 0.00       | 4871872.84 | E135°N30° | 0.00       | 3318785.35 |  |  |  |  |  |



Fig. 3. Bathymetric data(KorBathy30s, 2008) plot in WGS84 coordinate.

4.결 론

기존의 UTM 변환식은 8차까지 Taylor 전개에 의한 것 으로 mm단위의 변환 정밀도를 확보하기 위해 통상 중심 자오선 좌우 3°씩 경도 6° 범위의 구역 내에 적용한다. 한 편 우리나라 주변 해역에 대한 조석, 폭풍해일 또는 지진 해일 등의 수치모형에는 경도 14°구역의 수심자료가 최



Fig. 4. Bathymetric data plot in UTM coordinate.

소한 필요하다. 이와 같이 비교적 큰 구역에는 구면좌표 계를 사용하기도 하나 평면직교 좌표인 UTM는 구면좌표 에 비해 거리와 방향이 정확하여 새로운 고차의 변환식 을 유도하였다. 본 논문에서는 12차까지의 UTM 변환식 을 제시하고 차수에 따른 수렴의 정도를 나타내었으며 경 도 28°구역에 대해 12차 변환식으로 계산한 결과에 의 하면 mm단위의 정밀도를 보인다. 기존의 8차 변환식에 비해 본 12차에 의한 정밀도는 크게 향상되지 않으나 계 산에서 보인 차수에 따른 정밀도와 수렴도 분석은 의미 가 있다.

본 논문에서 보인 바와 같이 전개 차수의 증가에 따라 생성되는 항들은 대략 차수의 제곱만큼 추가됨으로 변환 식은 매우 복잡하게 된다. 이것은 고차 변환식 유도에 장 애요인이 되고 또 다른 요인으로는 UTM 변환특성 상 적 용구역이 넓어짐에 따른 거리의 부정확성을 들 수 있다. 그 러나 이러한 점을 감안하더라도 우리나라 주변 해역에 대 한 조석, 지진해일 등의 수치모형에 UTM 좌표계를 사용 하는 것이 보다 정밀한 결과를 낳을 것이라 판단된다. 이 를 위해 인터넷에 공개된 KorBathy30s(2008)의 WGS84 격자수심을 UTM 격자수심으로의 변환을 시도하였다.

# 감사의 글

본 연구는 한국해양연구원의 기본연구사업인 "연안 국 지 해일 정밀예보 지원체제 현업화 기술"과 "해일침수범 람지역 예측 기술 및 재해도(Hazard Map) 작성기술 개 발: 부산, 마산, 여수" 연구에서 수행된 결과의 일부이며 연구비 지원에 감사를 드립니다.

#### 참고문헌

국립해양조사원 (2008). 해도제작업무지침. <u>http://www.nori.go.kr/</u> 국토지리정보원 (2006). 좌표변환프로그램. <u>http://www.ngii.go.kr/</u> 국토지리정보원 (2008). 지도제작. <u>http://www.ngii.go.kr/</u> 백은기, 육찬상, 김원익, 김감래, 강석진, 이영진 (1993). 측 량학, 청문각.

서승원 (1999). 3차원 유한요소모형을 이용한 황해 및 동중 국해의 조석수동역학 해석. 대한토목학회논문집, 19(II-3), 375-387.

- 서승남 (2008). 한국 주변해역 30초 격자수심 KorBathy30s. 한국해안해양공학회지, 20(1), 110-120.
- 유복모 (1995). 개정판 측량학원론(I). 박영사.
- 윤성범, 임채호, 김경희, 이동영 (2002). 1993년 북해도 남 서외해 지진해일 전파 수치모의. 대한토목학회논문집, 22(4B), 573-582.
- 윤성범, 임채호 (2005). 지진해일 전파 수치모의를 위한 2 차원 유한요소모형의 능동적 분산보정기법. 한국해안해 양공학회지, 17(1), 1-8.
- 윤성범, 임채호, 배재석 (2007). 완변수심상 지진해일 전과 모의를 위한 분산보정 유한차분모형. 대한토목학회논문 집, 27(1B), 91-99.
- 장용구, 문두열, 정범석 (2003). GPS 정밀 좌표변환 알고리 금을 이용한 선박항법시스템에 관한 연구. 대한토목학회 논문집, 23(4D), 549-557.
- 조용식 (1996). 대양을 횡단하는 지진해일 모의. 대한토목 학회논문집, 16(II-3), 303-310.
- 최병호, 홍성진 (2005). 둥지형 동적결합 조석 모형을 이용 한 황해 및 동중국해의 조석모형. 한국해안·해양공학회 지, 17(4), 243-253.
- 허동수, 이현우, 이우동, 배기성 (2008). 슈퍼태풍 내습 시 부산경남 연안역의 폭풍해일고. 한국해안·해양공학회지, 20(1), 128-136.
- DMA (1989). The Universal Grids: Universal Transverse Mercador(UTM) and Universal Polar Stereographic(UPS). TM 8358.2, Defense Mapping Agency.
- DTED (2004). Level 1 Data. <u>http://edc.usgs.gov/products/ele-vation/srtmdted.html</u>
- Lee, J.-C., Kwon, J.-I., Park, K.-S., Jun, K.-C. (2008). Calculation of Storm Surges, Typhoon Maemi, J. Korean Soc. of Coastal and Ocean Eng., 20(1), 93-100.
- KorBathy30s (2008). Gridded bathymetric data. <u>http://codi.</u> kordi.re.kr/
- Thomas, P. D., (1952). Conformal projections in geodesy and cartography. SP No. 251, U. S. Department of Commerce.

Received April 1, 2008 Accepted May 19, 2008