• Title/Summary/Keyword: USB interface

Search Result 109, Processing Time 0.023 seconds

Implementation of Falls Detection System Using 3-axial Accelerometer Sensor (3축 가속도 센서를 이용한 낙상 검출 시스템 구현)

  • Jeon, Ah-Young;Yoo, Ju-Yeon;Park, Geun-Chul;Jeon, Gye-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1564-1572
    • /
    • 2010
  • In this study, the falls detection and direction classification system was implemented using 3-axial acceleration signal. The acceleration signals were acquired from the 3-axial accelerometer(MMA7260Q, Freescale, USA), and then transmitted to the computer through USB interface. The implemented system can detect falls using the newly proposed algorithm, and also classify the direction of falls using fuzzy classifier. The 6 subjects was selected for experiment and the accelerometer was attached on each subject's chest. Each subject walked in normal pace for 5 seconds, and then the fall down according to the four direction(front_fall, back_fall, left_fall and right_fall) during at least 2 second. The falls was easily detect using the newly proposed algorithm in this study. The acquired signals were analyzed after 1 second from generating falls. The fuzzy classifier was used to classify the direction of falls. The mean value of the falls detection rate was 94.79%. The classifier rate according to falls direction were 95.83% in case of front falls, 100% incase of back falls, 87.5% in case of left falls, and 95.83% in case of right falls.

The Design And Implementation of Robot Training Kit for Java Programming Learning (Java 프로그래밍 학습을 위한 로봇 트레이닝키트의 설계 및 구현)

  • Baek, Jeong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.10
    • /
    • pp.97-107
    • /
    • 2013
  • The latest programming paradigm has been mostly geared toward object-oriented programming and visual programming based on the object-oriented programming. However, object-oriented programming has a more difficult and complicated concept compared with that of existing structural programming technique; thus it has been very difficult to educate students in the IT-related department. This study designed and implemented a Java robot training kit in which the Java virtual machine is built so that it may enhance the desire and motivation of students for learning the object-oriented programming using the training kit which is possible to attach various input and output devices and to control a robot. The developed Java robot training kit is able to communicate with a computer through the USB interface, and it also enables learners to manufacture a robot for education and to practice applied programming because there is a general purpose input and output port inside the kit, through which diverse input and output devices, DC motor, and servo motor can be operated. Accordingly, facing the IT fusion era, the wall between the academic circles and the major becomes lower and the need for introducing education about creative engineering object-oriented programming language is emerging. At this point, the Java robot training kit developed in this study is expected to make a great commitment in this regard.

A 4×32-Channel Neural Recording System for Deep Brain Stimulation Systems

  • Kim, Susie;Na, Seung-In;Yang, Youngtae;Kim, Hyunjong;Kim, Taehoon;Cho, Jun Soo;Kim, Jinhyung;Chang, Jin Woo;Kim, Suhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.129-140
    • /
    • 2017
  • In this paper, a $4{\times}32$-channel neural recording system capable of acquiring neural signals is introduced. Four 32-channel neural recording ICs, complex programmable logic devices (CPLDs), a micro controller unit (MCU) with USB interface, and a PC are used. Each neural recording IC, implemented in $0.18{\mu}m$ CMOS technology, includes 32 channels of analog front-ends (AFEs), a 32-to-1 analog multiplexer, and an analog-to-digital converter (ADC). The mid-band gain of the AFE is adjustable in four steps, and have a tunable bandwidth. The AFE has a mid-band gain of 54.5 dB to 65.7 dB and a bandwidth of 35.3 Hz to 5.8 kHz. The high-pass cutoff frequency of the AFE varies from 18.6 Hz to 154.7 Hz. The input-referred noise (IRN) of the AFE is $10.2{\mu}V_{rms}$. A high-resolution, low-power ADC with a high conversion speed achieves a signal-to-noise and distortion ratio (SNDR) of 50.63 dB and a spurious-free dynamic range (SFDR) of 63.88 dB, at a sampling-rate of 2.5 MS/s. The effectiveness of our neural recording system is validated in in-vivo recording of the primary somatosensory cortex of a rat.

Preliminary Research of CZT Based PET System Development in KAERI

  • Jo, Woo Jin;Jeong, Manhee;Kim, Han Soo;Kim, Sang Yeol;Ha, Jang Ho
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.81-86
    • /
    • 2016
  • Background: For positron emission tomography (PET) application, cadmium zinc telluride (CZT) has been investigated by several institutes to replace detectors from a conventional system using photomultipliers or Silicon-photomultipliers (SiPMs). The spatial and energy resolution in using CZT can be superior to current scintillator-based state-of-the-art PET detectors. CZT has been under development for several years at the Korea Atomic Energy Research Institute (KAERI) to provide a high performance gamma ray detection, which needs a single crystallinity, a good uniformity, a high stopping power, and a wide band gap. Materials and Methods: Before applying our own grown CZT detectors in the prototype PET system, we investigated preliminary research with a developed discrete type data acquisition (DAQ) system for coincident events at 128 anode pixels and two common cathodes of two CZT detectors from Redlen. Each detector has a $19.4{\times}19.4{\times}6mm^3$ volume size with a 2.2 mm anode pixel pitch. Discrete amplifiers consist of a preamplifier with a gain of $8mV{\cdot}fC^{-1}$ and noise of 55 equivalent noise charge (ENC), a $CR-RC^4$ shaping amplifier with a $5{\mu}s$ peak time, and an analog-to-digital converter (ADC) driver. The DAQ system has 65 mega-sample per second flash ADC, a self and external trigger, and a USB 3.0 interface. Results and Discussion: Characteristics such as the current-to-voltage curve, energy resolution, and electron mobility life-time products for CZT detectors are investigated. In addition, preliminary results of gamma ray imaging using 511 keV of a $^{22}Na$ gamma ray source were obtained. Conclusion: In this study, the DAQ system with a CZT radiation sensor was successfully developed and a PET image was acquired by two sets of the developed DAQ system.

Optimization and Performance Evaluation for the Science Detector Systems of IGRINS

  • Jeong, Ueejeong;Chun, Moo-Young;Oh, Jae-Sok;Park, Chan;Yu, Young Sam;Oh, Heeyoung;Yuk, In-Soo;Kim, Kang-Min;Ko, Kyeong Yeon;Pavel, Michael;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.91.1-91.1
    • /
    • 2014
  • IGRINS (the Immersion GRating INfrared Spectrometer) is a high resolution wide-band infrared spectrograph developed by the Korea Astronomy and Space Science Institute (KASI) and the University of Texas at Austin (UT). This spectrograph has H-band and K-band science cameras, both of which use Teledyne's $2.5{\mu}m$ cutoff $2k{\times}2k$ HgCdTe HAWAII-2RG CMOS science grade detectors. Teledyne's cryogenic SIDECAR ASIC boards and JADE2 USB interface cards were installed to control these detectors. We performed lab experiments and test observations to optimize and evaluate the detector systems of science cameras. In this presentation, we describe a process to optimize bias voltages and way to reduce pattern noise with reference pixel subtraction schemes. We also present measurements of the following properties under optimized settings of bias voltages at cryogenic temperature (70K): read noise, Fowler noise, dark current, and reference-level stability, full well depth, linearity and conversion gain.

  • PDF

Development of Dental Image Management System based on Mobile Computing (모바일환경에서의 치과환자 구강영상 관리체계 개발)

  • Oh, Seon-Mi
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.1
    • /
    • pp.379-385
    • /
    • 2012
  • The purpose of this study is to propose that co-working plan with patient information service system for dental clinic and dental lab using smart phone system which is recently spread to. For this purpose, we introduced latest mobile S/W development environment. And design key features of patient information service system based on mobile platform(Android) by user interface design. In fact, we have applied this system(mobile system) to dental clinic and dental lab, we have following results: 1.There were significant possibility in dental utilization of smart phone based on latest ICT(Information & Communication Technology) technology. 2. Improve conventional method of image upload by connecting digital camera to the server computer using USB port. 3. Reduce error of image management by direct upload to server computer from smart phone. 4. Improve process of making prosthetic appliance by displaying dental image on smart phone in dental lab.

Implementation of Visible Light Communication Transceiver of Mobile Devices for Location-Based Services (위치기반서비스 제공을 위한 휴대기기용 가시광통신 송수신기 구현)

  • Park, Sangil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.889-891
    • /
    • 2017
  • Visible light communication technology, which is a communication using LED lighting, is defined by IEEE 802.15.7 WG and active research is under way. Visible light communication is advantageous not only to avoid interference with existing RF communication but also to provide location based service through accurate positioning by utilizing LOS (Line of Sight) characteristic. Therefore, it is very easy and efficient to locate and track the user's location. In this paper, we implemented a visible light communication transceiver using USB interface for easy application to portable devices. It supports the mobility of mobile devices through internet protocol and showed BER performance of less than $10^{-3}dBm$ at over 1m, which is the height of lighting and smart device during walking.

A Study On Design of ZigBee Chip Communication Module for Remote Radiation Measurement (원격 방사선 측정을 위한 ZigBee 원칩형 통신 모듈 설계에 대한 연구)

  • Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.552-558
    • /
    • 2014
  • This paper suggests how to design a ZigBee-chip-based communication module to remotely measure radiation level. The suggested communication module consists of two control processors for the chip as generally required to configure a ZigBee system, and one chip module to configure a ZigBee RF device. The ZigBee-chip-based communication module for remote radiation measurement consists of a wireless communication controller; sensor and high-voltage generator; charger and power supply circuit; wired communication part; and RF circuit and antenna. The wireless communication controller is to control wireless communication for ZigBee and to measure radiation level remotely. The sensor and high-voltage generator generates 500 V in two consecutive series to amplify and filter pulses of radiation detected by G-M Tube. The charger and power supply circuit part is to charge lithium-ion battery and supply power to one-chip processors. The wired communication part serves as a RS-485/422 interface to enable USB interface and wired remote communication for interfacing with PC and debugging. RF circuit and antenna applies an RLC passive component for chip antenna to configure BALUN and antenna impedance matching circuit, allowing wireless communication. After configuring the ZigBee-chip-based communication module, tests were conducted to measure radiation level remotely: data were successfully transmitted in 10-meter and 100-meter distances, measuring radiation level in a remote condition. The communication module allows an environment where radiation level can be remotely measured in an economically beneficial way as it not only consumes less electricity but also costs less. By securing linearity of a radiation measuring device and by minimizing the device itself, it is possible to set up an environment where radiation can be measured in a reliable manner, and radiation level is monitored real-time.

DEVELOPMENT OF THE READOUT CONTROLLER FOR INFRARED ARRAY (적외선검출기 READOUT CONTROLLER 개발)

  • Cho, Seoung-Hyun;Jin, Ho;Nam, Uk-Won;Cha, Sang-Mok;Lee, Sung-Ho;Yuk, In-Soo;Park, Young-Sik;Pak, Soo-Jong;Han, Won-Yong;Kim, Sung-Soo
    • Publications of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.67-74
    • /
    • 2006
  • We have developed a control electronics system for an infrared detector array of KASINICS (KASI Near Infrared Camera System), which is a new ground-based instrument of the Korea Astronomy and Space science Institute (KASI). Equipped with a $512{\times}512$ InSb array (ALADDIN III Quadrant, manufactured by Raytheon) sensitive from 1 to $5{\mu}m$, KASINICS will be used at J, H, Ks, and L-bands. The controller consists of DSP(Digital Signal Processor), Bias, Clock, and Video boards which are installed on a single VME-bus backplane. TMS320C6713DSP, FPGA(Field Programmable Gate Array), and 384-MB SDRAM(Synchronous Dynamic Random Access Memory) are included in the DSP board. DSP board manages entire electronics system, generates digital clock patterns and communicates with a PC using USB 2.0 interface. The clock patterns are downloaded from a PC and stored on the FPGA. UART is used for the communication with peripherals. Video board has 4 channel ADC which converts video signal into 16-bit digital numbers. Two video boards are installed on the controller for ALADDIN array. The Bias board provides 16 dc bias voltages and the Clock board has 15 clock channels. We have also coded a DSP firmware and a test version of control software in C-language. The controller is flexible enough to operate a wide range of IR array and CCD. Operational tests of the controller have been successfully finished using a test ROIC (Read-Out Integrated Circuit).