Objective: The purpose of this study was to investigate the effect of different kettlebell mass (30%, 40%, and 50% of the body mass) on kinematics and kinetic variables of kettlebell swing. Method: Total of 16 healthy male who had at least 1 year of kettlebell training experience were participated in this study (age: 31.69 ± 3.46 yrd., height: 173.38 ± 4.84 cm, body mass: 74.53 ± 6.45 kg). In this study, a 13-segments whole-body model (upper trunk, lower trunk, pelvis, both side of forearm, upperarm, thigh, and shank) was used and 26 reflective markers were attached to the body to identify the segments during the movement. A 3-dimensional motion analysis with 8 infrared cameras and 4 channeled EMG was performed to find the effect of kettlebell mass on its swing. To verify the kettlebell mass effect, a one-way ANOVA with a repeated measure was used and the statistical significance level was set at 𝛼=.05. Results: Firstly, in all lower extremity joints and thoracic vertebrae, a statistically significant change in angle was shown according to an increase in kettlebell mass during kettlebell swing (p<.05). Secondly, in both the up-swing and down-swing phases, the knee joint and ankle joint ROM showed a statistically significant increase as the kettlebell mass increased (p<.05) but no statistically significant difference was found in the hip joint and thoracic spine (p>.05). Lastly, the hamstrings muscle activity was statistically significantly increased as the kettlebell mass increased during up-swing phases (p<.05). Also, as the kettlebell mass increased in P4 of the down swing phase, the gluteus maximus showed a statistically significantly increased muscle activation, whereas the rectus femoris showed a statistically significantly decreased muscle activation (p <.05). Conclusion: As a result of this study, hip extension decreased and knee extension increased at 40% and 50% of body mass, and the spine also failed to maintain neutrality and increased flexion. Also, when kettlebell swings are performed with 50% of body mass, synergistic muscle dominance appears over 30% and 40% of body mass, which is judged to have a risk of potential injury. Therefore, it is thought that for beginners who start kettlebell exercise, swing practice should be performed with 30% of body mass. In addition, even in the case of experienced seniors, as the weight increases, the potential injury risk may increase, so it is thought that caution should be exercised when performing swings with 40% and 50% of body mass. In conclusion, it is thought that increasing the weight after sufficiently training with 30% of the weight of all subjects performing kettlebell swing is a way to maximize the exercise effect as well as prevent injury.