• Title/Summary/Keyword: UNS S31603

Search Result 7, Processing Time 0.021 seconds

Effect of Temperature on Electrochemical Characteristics of Stainless Steel in Green Death Solution Using Cyclic Potentiodynamic Polarization Test (순환동전위 분극실험을 이용한 스테인리스강의 그린데스용액에서 전기화학적 특성에 미치는 온도의 영향)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.266-280
    • /
    • 2021
  • Since 2020, the International Maritime Organization (IMO) has updated regulations on the sulfur content to be less than 0.5% in exhaust gas emitted from ships. Accordingly, the exhaust gas post-treatment device for ships, which is SOx/NOx reduction technology, was introduced. However, the exhaust gas post-treatment device is suffering corrosion because of the harsh corrosive environment formed by sulfate and chlorine oxide through the desulfurization process. In this investigation, cyclic potentiodynamic polarization (CPDP) experiment for UNS S31603 and UNS N08367 was performed in a green death solution that simulates the environment of a desulfurization device. The corrosion rate of UNS S31603 at the highest temperature was about 3 times higher than that of UNS N83067. Also, electron microscope scan revealed corrosion type UNS N83067 presents intergranular corrosion tendency. On the other hand, UNS S31603 was observed as general corrosion. The α values of UNS N08367 at 30 ℃ and 60 ℃ were higher than those of UNS S31603, thus UNS N08367 is considered to have a higher local damage tendency. Whereas, since the α value of UNS S31603 at 90 ℃ is larger than that of UNS N08367, UNS S31603 is considered to have a higher local damage trend.

Electrochemical Characteristics of Superaustenitic Stainless Steel with Temperature in Sea Water (슈퍼오스테나이트 스테인리스강의 해수환경에서 온도에 따른 전기화학적 특성)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.391-402
    • /
    • 2021
  • In this investigation, the electrochemical characteristics of superaustenitic and general austenitic stainless steels were compared by conducting potentiodynamic polarization experiment with varying temperatures in natural seawater solution. From the result of the potentiodynamic polarization experiment, the corrosion rate of UNS S31603 was found to be 17 times faster than that of UNS N08367 under the most severe corrosion conditions. The relationship between the corrosion rate by maximum damage depth and the corrosion rate by the corrosion current density was expressed as α value for each stainless steel. The α value of UNS S31603 under all temperature conditions was higher than that of UNS N08367 under similar conditions. This means that UNS S31603 is more prone to localized corrosion than UNS N08367. UNS S31603 expressed pitting type damages under all temperature conditions as shown by SEM analysis results. The pitting damage rapidly grew at the relatively poor grain boundaries. Damage on UNS N08367 was not clearly represented at 30 ℃ and 60 ℃, and slight intergranular corrosion damage was observed on the entire surface at 90 ℃.

Identifying Factors Affecting Surface Roughness with Electropolishing Condition Using Full Factorial Design for UNS S31603 (UNS S31603에 대하여 완전요인설계를 이용한 전해연마조건에 따른 표면 거칠기의 유효인자 산출)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.314-324
    • /
    • 2022
  • The objective of this investigation was to indentify major factors affecting surface roughness among various parameters of electropolishing process using the design of an experiment method (full factorial design) for UNS S31603. Factors selected included electrolyte composition ratio, applied current density, and electrolytic polishing time. They were compared through analysis of variance (ANOVA). Results of ANOVA revealed that all parameters could affect surface roughness, with the influence of electrolyte composition ratio being the highest. As a result of surface analysis after electropolishing, the specimen with the deepest surface damage was about 35 times greater than the condition with the smallest surface damage. The largest value of surface roughness after electropolishing was higher than that of mechanical polishing due to excessive processing. On the other hand, the smallest value of surface roughness after electropolishing was 0.159 ㎛, which was improved by more than 80% compared to the previous mechanical polishing. Taken all results together, it is the most appropriate to perform electrolytic polishing with a sulfuric acid and phosphoric acid ratio of 3:7, an applied current density of 300 mA/cm2, and anelectrolytic polishing time of 5 minutes.

Effect of Seawater Temperature on the Cyclic Potentiodynamic Polarization Characteristics and Microscopic Analysis on Damage Behavior of Super Austenitic Stainless Steel (슈퍼오스테나이트 스테인리스강의 순환동전위 분극특성에 미치는 해수온도의 영향과 손상 거동에 관한 미시적 분석)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.412-425
    • /
    • 2021
  • Because austenitic stainless steel causes localized corrosion such as pitting and crevice corrosion in environments containing chlorine, corrosion resistance is improved by surface treatment or changes of the alloy element content. Accordingly, research using cyclic potentiodynamic polarization experiment to evaluate the properties of the passivation film of super austenitic stainless steel that improved corrosion resistance is being actively conducted. In this investigation, the electrochemical properties of austenitic stainless steel and super austenitic stainless steel were compared and analyzed through cyclic potentiodynamic polarization experiment with varying temperatures. Repassivation properties were not observed in austenitic stainless steels at all temperature conditions, but super austenitic stainless steels exhibited repassivation behaviors at all temperatures. This is expressed as α values using a relational formula comparing the localized corrosion rate and general corrosion rate. As the α values of UNS S31603 decreased with temperature, the tendency of general corrosion was expected to be higher, and the α value of UNS N08367 increased with increasing temperatures, so it is considered that the tendency of localized corrosion was dominant.

Electrochemical Properties of Austenitic Stainless Steel with Initial Delay Time and Surface Roughness in Electropolishing Solution (전해연마 용액에서 안정화 시간과 표면 거칠기에 따른 오스테나이트 스테인리스강의 전기화학적 특성)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.158-169
    • /
    • 2022
  • The objective of this study was to investigate the electrochemical behavior and damage degree of metal surface under different conditions by performing a potentiodynamic polarization experiment using an electropolishing solution for UNS S31603 based on initial delay time and surface roughness (parameters). A second anodic peak occurred at initial delay time of 0s and 100s. However, it was not discovered at 1000s and 3600s. This research referred to an increase in current density due to hydrogen oxidation reaction among various hypotheses for the second anodic peak. After the experiment, both critical current density and corrosion current density decreased when the initial delay time (immersion time) was longer. As a result of surface analysis, characteristics of the potentiodynamic polarization behavior were similar with roughness, although the degree of damage was clearly different. With an increase in surface roughness value, the degree of surface damage was precisely observed. As such, electrochemical properties were different according to the immersion time in the electropolishing solution. To select electropolishing conditions such as applied current density, voltage, and immersion time, 1000s for initial delay time on the potentiodynamic polarization behavior was the most appropriate in this experiment.

Optimization of Electropolishing Conditions with Statistical and Surface Analyses Using Taguchi Method for Austenitic Stainless Steel (다구찌 기법을 활용한 통계적·표면 분석에 따른 오스테나이트 스테인리스강의 전해연마조건 최적화 연구)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.360-371
    • /
    • 2022
  • Electropolishing has various parameters because an electrochemical reaction is applied. Accordingly, experiments to determine factors and levels of electropolishing conditions are in progress for various materials. The purpose of this investigation was to optimize conditions for electropolishing using the taguchi method for UNS S31603. Factors such as electrolyte composition ratio, electrolyte temperature, and electropolishing process time were selected. Electropolishing was optimized using analysis of variance (ANOVA), signal-to-noise ratio (the smaller the better characteristics), and surface analysis. Results of ANOVA revealed that only the electrolyte composition ratio among factors was effective for surface roughness. As a result of statistical analysis of the signal-to-noise ratio, the highest signal-to-noise ratio was calculated under electropolishing conditions with sulfuric acid and phosphoric acid ratio of 4:6, an electrolyte temperature of 75 ℃, and electropolishing process time of 7 minutes. In addition, the surface roughness after electropolishing under the above conditions was 0.121 ㎛, which was improved by more than 88% compared to mechanical polishing.

Effect of electropolishing process time on electrochemical characteristics in seawater for austenitic stainless steel (오스테나이트 스테인리스강의 해수에서 전기화학적 특성에 미치는 전해연마시간의 영향)

  • Hwang, Hyun-Kyu;Shin, Dong-Ho;Heo, Ho-Seong;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.4
    • /
    • pp.236-246
    • /
    • 2022
  • Electropolishing is a surface finishing treatment that compensates for the disadvantages of the mechanical polishing process. It not only has a smooth surface, but also improves corrosion resistance. Therefore, the purpose of this investigation is to examine the corrosion resistance and electrochemical characteristics in seawater of UNS S31603 with electropolishing process time. The roughness improvement rate after electropolishing was improved by about 78% compared to before polishing, indicating that the electropolishing is effective. As a result of potential measuring of mechanical polishing and electropolishing, the potential of electropolishing was nobler than the mechanical polishing condition. As a result of calculating the corrosion current density after potentiodynamic polarization experiment with electropolishing conditions, the corrosion current density of mechanical polishing was about 6.4 times higher than that of electropolishing. After potentiodynamic polarization experiment with electropolishing conditions, the maximum damage depth of mechanical polishing was about 2.2 times higher than that of electropolishing(7 minutes). In addition, the charge transfer resistance of the specimen electropolished for 7 minutes was the highest, indicating improved corrosion resistance.