Browse > Article
http://dx.doi.org/10.14773/cst.2022.21.5.360

Optimization of Electropolishing Conditions with Statistical and Surface Analyses Using Taguchi Method for Austenitic Stainless Steel  

Hwang, Hyun-Kyu (Graduate school, Mokpo national maritime university)
Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university)
Publication Information
Corrosion Science and Technology / v.21, no.5, 2022 , pp. 360-371 More about this Journal
Abstract
Electropolishing has various parameters because an electrochemical reaction is applied. Accordingly, experiments to determine factors and levels of electropolishing conditions are in progress for various materials. The purpose of this investigation was to optimize conditions for electropolishing using the taguchi method for UNS S31603. Factors such as electrolyte composition ratio, electrolyte temperature, and electropolishing process time were selected. Electropolishing was optimized using analysis of variance (ANOVA), signal-to-noise ratio (the smaller the better characteristics), and surface analysis. Results of ANOVA revealed that only the electrolyte composition ratio among factors was effective for surface roughness. As a result of statistical analysis of the signal-to-noise ratio, the highest signal-to-noise ratio was calculated under electropolishing conditions with sulfuric acid and phosphoric acid ratio of 4:6, an electrolyte temperature of 75 ℃, and electropolishing process time of 7 minutes. In addition, the surface roughness after electropolishing under the above conditions was 0.121 ㎛, which was improved by more than 88% compared to mechanical polishing.
Keywords
Electropolishing; Surface roughness; UNS S31603; Taguchi method; SN ratio;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 H. S. Klapper, J. Stevens and G. Wiese, Pitting Corrosion Resistance of CrMn Austenitic Stainless Steel in Simulated Drilling Conditions-Role of pH, Temperature, and Chloride Concentration, CORROSION, 69, 1095 (2013). Doi: https://doi.org/10.5006/0947   DOI
2 S. H. Kim, S. G Lee, S. G. Choi, E. S. Lee, S. B Choi and C. H. Lee, A Study on the Characteristics of Micro Electropolishing for Stainless Steel, The International Journal of Advanced Manufacturing Technology, 85, 2313 (2016). Doi: https://doi.org/10.4028/www.scientific.net/AMR.328-330.474   DOI
3 J. Jeykrishnan, B. Vijaya Ramnath, C. Elanchezhian and S. Akilesh, Parametric analysis on Electro-chemical machining of SKD-12 tool steel, Materials Today: Proceedings, 4, 3760 (2017). Doi: https://doi.org/10.1016/ j.matpr.2017.02.272   DOI
4 S. S. Joshi and D. Marla, Electrochemical Micromachining, Elsevier, 11, 373 (2014). Doi: https://doi.org/10.1016/B978-0-08-096532-1.01108-0   DOI
5 S. J. Lee and J. J Lai, The effects of electropolishing (EP) process parameters on corrosion resistance of 316L stainless steel, Journal of Materials Processing Technology, 140, 206 (2003). Doi: https://doi.org/10.1016/S0924-0136(03)00785-4   DOI
6 SEMI F19-95, Specification for the Finish of the Wetted Surface of Electropolished 316L Stainless Steel Components.
7 S. C. Tam, N. L. Loh, C. P. A. Mah and N. H. Loh, Electrochemical polishing of biomedical titanium orifice rings, Journal of Materials Processing Technology, 35, 83(1992). Doi: https://doi.org/10.1016/0924-0136(92)90303-A   DOI
8 M. J. Shin, S. Y. Baek and E. S Lee, A Study for Improving Surface Roughness of Nitinol Shape Memory Alloy in Micro-Electropolishing by Taguchi Method, Korean Society for Precision Engineering, 2007a, 273 (2007). Doi: https://koreascience.kr/article/CFKO200717054765065.page
9 M. Muslim, A. S. Martin, S. Tutik, M. Norihisa and S. P. Gunawan, Electropolishing Parametric Optimization of Surface Quality for the Fabrication of a Titanium Microchannel Using the Taguchi Method, Machines, 9, 325(2021). Doi: https://doi.org/10.3390/machines9120325   DOI
10 S. Moon and S. Kim, Design Optimization of Earth Retaining Walls Using the Taguchi Method, Korean Journal of Construction Engineering and Management, 18, 83(2017). Doi: https://doi.org/10.6106/KJCEM.2017.18.1.083   DOI
11 ASTM B912, Standard Specification for Passivation of Stainless Steels Using Electropolishing (2018). Doi: https://www.astm.org/b0912-02r18.html
12 S. B. Lee, Minitab example-driven design of experiments, ERETECH, 9 (2018).
13 J. Joseph, Pignatiello and JR, An Overview of the Strategy and Tactics of Taguchi, IIE Transactions, 20, 247(2007). Doi: https://doi.org/10.1080/07408178808966177   DOI
14 K. L. TSUI, An overview of Taguchi method and newly developed statistical methods for robust design, IIE Transactions, 24, 44 (2007). Doi: https://doi.org/10.1080/07408179208964244   DOI
15 C. C Lin and C. C. Hu, Electropolishing of 304 stainless steel: Surface roughness control using experimental design strategies and a summarized electropolishing model, Electrochimica Acta, 53, 3356 (2008). Doi: https://doi.org/10.1016/j.electacta.2007.11.075   DOI
16 T. T. Kao, T. K. Liu and Y. W. Tsai, Optimization of anodizing process parameters for the volume expansion of anodic aluminum oxide film by taguchi method, ICCA, 590(2014). Doi: https://doi.org/10.1109/ICCA.2014.6870985   DOI
17 K. H. Jung, Investigation on the Prediction of Electrochemical and Mechanical Characteristics of Stainless Steel for Marine Environments using Machine Learning and Experimental Design, A thesis for a doctorate, Mokpo National Maritime University (2020).
18 S. Rohith, N. Mohan, L. Avinash, P. G. C. Manjunath, Y. P. Danil, G. Khaled, V. S. P. Raghupatruni and W. Szymon, Experimental investigation of selective laser melting parameters for higher surface quality and microhardness properties: taguchi and super ranking concept approaches, Journal of Materials Research and Technology, 14, 2586(2021). Doi: https://doi.org/10.1016/j.jmrt.2021.07.144   DOI
19 A. Farjami, H. Yousefnia, Z. S. Seyedraoufi and Y. Shajari, Investigation of Inhibitive Effects of 2-Mercaptobenzimidazole (2-MBI) and Polyethyleneimine (PEI) on Pitting Corrosion of Austenitic Stainless Steel, Jounal of Bio-and Tribo-Corrosion, 6, 1 (2020). Doi: https://doi.org/10.1007/s40735-020-00397-0   DOI
20 D. Gopi, D. Rajeswari, S. Ramya, M. Sekar, Pramod. R, Jishnu Dwivedi ,L. Kavitha, R. Ramaseshan, Enhanced corrosion resistance of strontium hydroxyapatite coating on electron beam treated surgical grade stainless steel, Applied Surface Science, 286, 83 (2013). Doi: https://doi.org/10.1016/j.apsusc.2013.09.023   DOI
21 S. Y. Li, J. Y. Jeon and Y. T Kho, Statistical Approach to Underground Corrosion of Carbon Steel Pipeline, Corrosion Science and Technology, 31, 461 (2002). Doi: https://www.j-cst.org/data/issue/CST/C000106/C00010600461.pdf   DOI
22 K. H. Jung and S. J. Kim, Prediction of Pitting Corrosion Characteristics of AL-6XN Steel with Sensitization and Environmental Variables Using Multiple Linear Regression Method, Corrosion Science and Technology, 19, 302(2020). Doi: https://doi.org/10.14773/cst.2020.19.6.302   DOI
23 V. Verma and R. Sahu, Process parameter optimization of die-sinking EDM on Titanium grade - V alloy (Ti6Al4V) using full factorial design approach, Materials Today: Proceedings, 4, 1893 (2017). Doi: https://doi.org/10.1016/j.matpr.2017.02.034   DOI
24 T. Taner and J. Antony, Applying Taguchi methods to health care, Leadership in Health Services, 19, 26 (2006). Doi: https://doi.org/10.1108/13660750610643831   DOI
25 G. Taguchi, Introduction to quality engineering: designing quality into products and processes (1986).
26 M. Datta and D. Landolt, Fundamental aspects and applications of electrochemical microfabrication, Electrochimca Acta, 45, 2535 (2000). Doi: https://doi.org/10.1016/S0013-4686(00)00350-9   DOI
27 J. A Ghani, I. A Choudhury and H. H Hassan, Application of Taguchi method in the optimization of end milling parameters, Journal of Materials Processing Technology, 145, 84 (2004). Doi: https://doi.org/10.1016/S0924-0136(03)00865-3   DOI
28 D. H. Shin, S. J. Kim, Corrosion Characteristics of 316L Stainless Steel with Chloride Concentrations in Cathode Operating Conditions of Metallic Bipolar Plate for PEMFC, Corrosion Science and Technology, 20, 435(2021). Doi: https://doi.org/10.14773/cst.2021.20.6.435   DOI
29 T. Baguley, Standardized or simple effect size: What should be reported?, British Journal of Psychology, 100, 603(2011). Doi: https://doi.org/10.1348/000712608X377117   DOI
30 H. K. Hwang and S. J. Kim, Electrochemical Properties of Austenitic Stainless Steel with Initial Delay Time and Surface Roughness in Electropolishing Solution, Corrosion Science and Technology, 21, 158 (2022). Doi: https://doi.org/10.14773/cst.2022.21.2.158   DOI
31 D. Brent, T. A. Saunders, F. G Moreno, and P. Tyagi, Taguchi Design of Experiment for the Optimization of Electrochemical Polishing of Metal Additive Manufacturing Components., Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition. 2, 1 (2016). Doi: https://doi.org/10.1115/IMECE2016-67492   DOI
32 S. G. Nahm, Understanding Effect Sizes, Hanyand Medical Reviews, 35, 40 (2015). Doi: http://dx.doi.org/10.7599/hmr.2015.35.1.40   DOI
33 S. H. Kim, S. H. Lee, J. H. Cho, D. H. Lim, J. S. Choi and C. H. Park, Process Optimization for Life Extension of Electropolishing Solution using Half Round Bus Bar, The Korean Institute of Surface Engineering, 49, 447 (2016). Doi: https://doi.org/10.5695/JKISE.2016.49.5.447   DOI
34 S. H. Kim, Process Optimization for Life Extension of Electropolishing Solution for Semiconductor Piping Tube, A thesis for a doctorate, Kwangwoon University (2016)
35 J. M. Park, and W. C. Kim, Effect of Electropolishing Process on Corrosion Resistance of Co-Cr Alloy, Journal of the Korean institute of surface engineering, 43, 199(2010). Doi: https://doi.org/10.5695/JKISE.2010.43.4.199   DOI