DOI QR코드

DOI QR Code

Optimization of Electropolishing Conditions with Statistical and Surface Analyses Using Taguchi Method for Austenitic Stainless Steel

다구찌 기법을 활용한 통계적·표면 분석에 따른 오스테나이트 스테인리스강의 전해연마조건 최적화 연구

  • Hwang, Hyun-Kyu (Graduate school, Mokpo national maritime university) ;
  • Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university)
  • 황현규 (목포해양대학교 대학원) ;
  • 김성종 (목포해양대학교 기관시스템공학부)
  • Received : 2022.08.29
  • Accepted : 2022.09.17
  • Published : 2022.11.02

Abstract

Electropolishing has various parameters because an electrochemical reaction is applied. Accordingly, experiments to determine factors and levels of electropolishing conditions are in progress for various materials. The purpose of this investigation was to optimize conditions for electropolishing using the taguchi method for UNS S31603. Factors such as electrolyte composition ratio, electrolyte temperature, and electropolishing process time were selected. Electropolishing was optimized using analysis of variance (ANOVA), signal-to-noise ratio (the smaller the better characteristics), and surface analysis. Results of ANOVA revealed that only the electrolyte composition ratio among factors was effective for surface roughness. As a result of statistical analysis of the signal-to-noise ratio, the highest signal-to-noise ratio was calculated under electropolishing conditions with sulfuric acid and phosphoric acid ratio of 4:6, an electrolyte temperature of 75 ℃, and electropolishing process time of 7 minutes. In addition, the surface roughness after electropolishing under the above conditions was 0.121 ㎛, which was improved by more than 88% compared to mechanical polishing.

Keywords

References

  1. H. S. Klapper, J. Stevens and G. Wiese, Pitting Corrosion Resistance of CrMn Austenitic Stainless Steel in Simulated Drilling Conditions-Role of pH, Temperature, and Chloride Concentration, CORROSION, 69, 1095 (2013). Doi: https://doi.org/10.5006/0947
  2. S. J. Lee and J. J Lai, The effects of electropolishing (EP) process parameters on corrosion resistance of 316L stainless steel, Journal of Materials Processing Technology, 140, 206 (2003). Doi: https://doi.org/10.1016/S0924-0136(03)00785-4
  3. S. H. Kim, S. G Lee, S. G. Choi, E. S. Lee, S. B Choi and C. H. Lee, A Study on the Characteristics of Micro Electropolishing for Stainless Steel, The International Journal of Advanced Manufacturing Technology, 85, 2313 (2016). Doi: https://doi.org/10.4028/www.scientific.net/AMR.328-330.474
  4. J. Jeykrishnan, B. Vijaya Ramnath, C. Elanchezhian and S. Akilesh, Parametric analysis on Electro-chemical machining of SKD-12 tool steel, Materials Today: Proceedings, 4, 3760 (2017). Doi: https://doi.org/10.1016/ j.matpr.2017.02.272
  5. SEMI F19-95, Specification for the Finish of the Wetted Surface of Electropolished 316L Stainless Steel Components.
  6. S. S. Joshi and D. Marla, Electrochemical Micromachining, Elsevier, 11, 373 (2014). Doi: https://doi.org/10.1016/B978-0-08-096532-1.01108-0
  7. S. C. Tam, N. L. Loh, C. P. A. Mah and N. H. Loh, Electrochemical polishing of biomedical titanium orifice rings, Journal of Materials Processing Technology, 35, 83(1992). Doi: https://doi.org/10.1016/0924-0136(92)90303-A
  8. C. C Lin and C. C. Hu, Electropolishing of 304 stainless steel: Surface roughness control using experimental design strategies and a summarized electropolishing model, Electrochimica Acta, 53, 3356 (2008). Doi: https://doi.org/10.1016/j.electacta.2007.11.075
  9. M. J. Shin, S. Y. Baek and E. S Lee, A Study for Improving Surface Roughness of Nitinol Shape Memory Alloy in Micro-Electropolishing by Taguchi Method, Korean Society for Precision Engineering, 2007a, 273 (2007). Doi: https://koreascience.kr/article/CFKO200717054765065.page
  10. M. Muslim, A. S. Martin, S. Tutik, M. Norihisa and S. P. Gunawan, Electropolishing Parametric Optimization of Surface Quality for the Fabrication of a Titanium Microchannel Using the Taguchi Method, Machines, 9, 325(2021). Doi: https://doi.org/10.3390/machines9120325
  11. T. T. Kao, T. K. Liu and Y. W. Tsai, Optimization of anodizing process parameters for the volume expansion of anodic aluminum oxide film by taguchi method, ICCA, 590(2014). Doi: https://doi.org/10.1109/ICCA.2014.6870985
  12. S. Moon and S. Kim, Design Optimization of Earth Retaining Walls Using the Taguchi Method, Korean Journal of Construction Engineering and Management, 18, 83(2017). Doi: https://doi.org/10.6106/KJCEM.2017.18.1.083
  13. ASTM B912, Standard Specification for Passivation of Stainless Steels Using Electropolishing (2018). Doi: https://www.astm.org/b0912-02r18.html
  14. K. H. Jung, Investigation on the Prediction of Electrochemical and Mechanical Characteristics of Stainless Steel for Marine Environments using Machine Learning and Experimental Design, A thesis for a doctorate, Mokpo National Maritime University (2020).
  15. S. B. Lee, Minitab example-driven design of experiments, ERETECH, 9 (2018).
  16. J. Joseph, Pignatiello and JR, An Overview of the Strategy and Tactics of Taguchi, IIE Transactions, 20, 247(2007). Doi: https://doi.org/10.1080/07408178808966177
  17. S. Rohith, N. Mohan, L. Avinash, P. G. C. Manjunath, Y. P. Danil, G. Khaled, V. S. P. Raghupatruni and W. Szymon, Experimental investigation of selective laser melting parameters for higher surface quality and microhardness properties: taguchi and super ranking concept approaches, Journal of Materials Research and Technology, 14, 2586(2021). Doi: https://doi.org/10.1016/j.jmrt.2021.07.144
  18. K. L. TSUI, An overview of Taguchi method and newly developed statistical methods for robust design, IIE Transactions, 24, 44 (2007). Doi: https://doi.org/10.1080/07408179208964244
  19. V. Verma and R. Sahu, Process parameter optimization of die-sinking EDM on Titanium grade - V alloy (Ti6Al4V) using full factorial design approach, Materials Today: Proceedings, 4, 1893 (2017). Doi: https://doi.org/10.1016/j.matpr.2017.02.034
  20. J. A Ghani, I. A Choudhury and H. H Hassan, Application of Taguchi method in the optimization of end milling parameters, Journal of Materials Processing Technology, 145, 84 (2004). Doi: https://doi.org/10.1016/S0924-0136(03)00865-3
  21. T. Taner and J. Antony, Applying Taguchi methods to health care, Leadership in Health Services, 19, 26 (2006). Doi: https://doi.org/10.1108/13660750610643831
  22. G. Taguchi, Introduction to quality engineering: designing quality into products and processes (1986).
  23. D. Brent, T. A. Saunders, F. G Moreno, and P. Tyagi, Taguchi Design of Experiment for the Optimization of Electrochemical Polishing of Metal Additive Manufacturing Components., Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition. 2, 1 (2016). Doi: https://doi.org/10.1115/IMECE2016-67492
  24. K. H. Jung and S. J. Kim, Prediction of Pitting Corrosion Characteristics of AL-6XN Steel with Sensitization and Environmental Variables Using Multiple Linear Regression Method, Corrosion Science and Technology, 19, 302(2020). Doi: https://doi.org/10.14773/cst.2020.19.6.302
  25. M. Datta and D. Landolt, Fundamental aspects and applications of electrochemical microfabrication, Electrochimca Acta, 45, 2535 (2000). Doi: https://doi.org/10.1016/S0013-4686(00)00350-9
  26. S. G. Nahm, Understanding Effect Sizes, Hanyand Medical Reviews, 35, 40 (2015). Doi: http://dx.doi.org/10.7599/hmr.2015.35.1.40
  27. T. Baguley, Standardized or simple effect size: What should be reported?, British Journal of Psychology, 100, 603(2011). Doi: https://doi.org/10.1348/000712608X377117
  28. H. K. Hwang and S. J. Kim, Electrochemical Properties of Austenitic Stainless Steel with Initial Delay Time and Surface Roughness in Electropolishing Solution, Corrosion Science and Technology, 21, 158 (2022). Doi: https://doi.org/10.14773/cst.2022.21.2.158
  29. S. H. Kim, S. H. Lee, J. H. Cho, D. H. Lim, J. S. Choi and C. H. Park, Process Optimization for Life Extension of Electropolishing Solution using Half Round Bus Bar, The Korean Institute of Surface Engineering, 49, 447 (2016). Doi: https://doi.org/10.5695/JKISE.2016.49.5.447
  30. D. Gopi, D. Rajeswari, S. Ramya, M. Sekar, Pramod. R, Jishnu Dwivedi ,L. Kavitha, R. Ramaseshan, Enhanced corrosion resistance of strontium hydroxyapatite coating on electron beam treated surgical grade stainless steel, Applied Surface Science, 286, 83 (2013). Doi: https://doi.org/10.1016/j.apsusc.2013.09.023
  31. A. Farjami, H. Yousefnia, Z. S. Seyedraoufi and Y. Shajari, Investigation of Inhibitive Effects of 2-Mercaptobenzimidazole (2-MBI) and Polyethyleneimine (PEI) on Pitting Corrosion of Austenitic Stainless Steel, Jounal of Bio-and Tribo-Corrosion, 6, 1 (2020). Doi: https://doi.org/10.1007/s40735-020-00397-0
  32. J. M. Park, and W. C. Kim, Effect of Electropolishing Process on Corrosion Resistance of Co-Cr Alloy, Journal of the Korean institute of surface engineering, 43, 199(2010). Doi: https://doi.org/10.5695/JKISE.2010.43.4.199
  33. S. Y. Li, J. Y. Jeon and Y. T Kho, Statistical Approach to Underground Corrosion of Carbon Steel Pipeline, Corrosion Science and Technology, 31, 461 (2002). Doi: https://www.j-cst.org/data/issue/CST/C000106/C00010600461.pdf 106/C00010600461.pdf
  34. D. H. Shin, S. J. Kim, Corrosion Characteristics of 316L Stainless Steel with Chloride Concentrations in Cathode Operating Conditions of Metallic Bipolar Plate for PEMFC, Corrosion Science and Technology, 20, 435(2021). Doi: https://doi.org/10.14773/cst.2021.20.6.435
  35. S. H. Kim, Process Optimization for Life Extension of Electropolishing Solution for Semiconductor Piping Tube, A thesis for a doctorate, Kwangwoon University (2016)