As various methodologies for business process analysis and design have been conducted in many organizations by their own ways, those methodologies are not compatible each other. In order to reduce the cost of analysis for organizations. some mapping methods between different methodologies need to be developed. UMM(UN/CEFACT Modeling Methodology) that has an object-oriented point of view. can overcome the limits of existing bottom-up approaches and make it reasonable. It also simplifies the business and administrative procedures. IDEF( Integrated Definition Language) with a structural point of view that has been widely used as a system analysis and design method, needs to be mapped to UMM in order to reuse the existing IDEF models. In this study, we propose a guideline that deals with procedures of utilizing IDEF models from which we want to derive the UMM models for developing an electronic commerce system including electronic documents exchange. By comparing IDEF and UMM, we analyze the differences between those two methodologies. Based on these differences. we suggest the basic strategies for mapping method from IDEF to UMM. We also propose a mapping guideline that can make UMM results from the modeling results of IDEF. We can take an advantage of the existing IDEF analysis design results when we adopt UMM methodology for electronic business system. Many analysts who are familiar with the IDEF methodology can develop UMM work-flow by utilizing their existing results and skills.
International Journal of Computer Science & Network Security
/
v.24
no.2
/
pp.1-14
/
2024
While text-to-image models have made remarkable progress in image synthesis, certain models, particularly generative diffusion models, have exhibited a noticeable bias to- wards generating images related to the culture of some developing countries. This paper introduces an empirical investigation aimed at mitigating the bias of image generative model. We achieve this by incorporating symbols representing Saudi culture into a stable diffusion model using the Dreambooth technique. CLIP score metric is used to assess the outcomes in this study. This paper also explores the impact of varying parameters for instance the quantity of training images and the learning rate. The findings reveal a substantial reduction in bias-related concerns and propose an innovative metric for evaluating cultural relevance.
Taghreed Alotaibi;Laila Alkabkabi;Rana Alzahrani;Eman Almalki;Ghosson Banjar;Kholod Alshareef;Olfat M. Mirza
International Journal of Computer Science & Network Security
/
v.23
no.12
/
pp.115-122
/
2023
Makkah Al-Mukarramah is the capital of Islamic world. It receives special attention from the Saudi government's rulers to transform it into a smart city for the benefit of millions of pilgrims. One of the 2030 vision objectives is to transform specific cities to smart ones with advanced technological facilitation, Makkah is one of these cities. The history of Makkah is not well known for some Muslims. As a result, we built the concepts of our application "Ain Makkah" to enable visitors of Makkah to know the history of Makkah by using technology. In particular "Ain Makkah" uses Augmented Reality to view the history of Al-Kaaba. A 3D model will overlay Al-Kaaba to show it in the last years. Our project will use Augmented Reality to build a 3D model to overlay Al-Kaaba. Future work will expand the number of historical landmarks of Makkah.
Alhazmi, Huda N;Alghamdi, Alshymaa;Alajlani, Fatimah;Abuayied, Samah;Aldosari, Fahd M
International Journal of Computer Science & Network Security
/
v.21
no.4
/
pp.84-92
/
2021
Care services are a significant asset in human life. Care in its overall nature focuses on human needs and covers several aspects such as health care, homes, personal care, and education. In fact, care deals with many dimensions: physical, psychological, and social interconnections. Very little information is available on estimating the cost of care services that provided to orphans and abandoned children. Prediction of the cost of the care system delivered by governmental or non-governmental organizations to support orphans and abandoned children is increasingly needed. The purpose of this study is to analyze the care cost for orphanage organizations in Saudi Arabia to forecast the cost as well as explore the most influence factor on the cost. By using business analytic process that applied statistical and machine learning techniques, we proposed a model includes simple linear regression, Naive Bayes classifier, and Random Forest algorithms. The finding of our predictive model shows that Naive Bayes has addressed the highest accuracy equals to 87% in predicting the total care cost. Our model offers predictive approach in the perspective of business analytics.
Objective of this paper is to develop the user mobility model(UMM) which is used for the performance analysis of location update and paging algorithm and at the same time, consider the user mobility pattern(UMP) in zone-based cellular networks. User mobility pattern shows correlation in space and time. UMM should consider these correlations of UMP. K-dimensional Markov chain is presented as a UMM considering them where the states of Markov chain are defined as the current location area(LA) and the consecutive LAs visited in the path. Also, a new two dimensional Markov chain composed of current LA and time interval is presented. Simulation results show that the appropriate size of K in the former UMM is two and the latter UMM reflects the characteristic of UMP well and so is a good model for the analytic method to solve the performance of location update and paging algorithm.
International Journal of Computer Science & Network Security
/
v.22
no.4
/
pp.53-58
/
2022
Pneumonia is a form of acute respiratory infection that affects the lungs. According to the World Health Organization, pneumonia is the leading cause of death for children worldwide. As a result, pneumonia was the top killer of children under the age of five years old in 2015, which is 15% of all deaths worldwide. In this paper, we used CNN model architectures to compare between the result of proposed a CNN method with VGG based model architecture. The model's performance in detecting pneumonia shows that the proposed model based on VGG can classify normal and abnormal X-rays effectively and more accurately than the proposed model used in this paper.
Amal Alshahrani;Jenan Mustafa;Manar Almatrafi;Layan Albaqami;Raneem Aljabri;Shahad Almuntashri
International Journal of Computer Science & Network Security
/
v.24
no.5
/
pp.53-63
/
2024
Alzheimer's disease is a brain disorder that worsens over time and affects millions of people around the world. It leads to a gradual deterioration in memory, thinking ability, and behavioral and social skills until the person loses his ability to adapt to society. Technological progress in medical imaging and the use of artificial intelligence, has provided the possibility of detecting Alzheimer's disease through medical images such as magnetic resonance imaging (MRI). However, Deep learning algorithms, especially convolutional neural networks (CNNs), have shown great success in analyzing medical images for disease diagnosis and classification. Where CNNs can recognize patterns and objects from images, which makes them ideally suited for this study. In this paper, we proposed to compare the performances of Alzheimer's disease detection by using two deep learning methods: You Only Look Once (YOLO), a CNN-enabled object recognition algorithm, and Visual Geometry Group (VGG16) which is a type of deep convolutional neural network primarily used for image classification. We will compare our results using these modern models Instead of using CNN only like the previous research. In addition, the results showed different levels of accuracy for the various versions of YOLO and the VGG16 model. YOLO v5 reached 56.4% accuracy at 50 epochs and 61.5% accuracy at 100 epochs. YOLO v8, which is for classification, reached 84% accuracy overall at 100 epochs. YOLO v9, which is for object detection overall accuracy of 84.6%. The VGG16 model reached 99% accuracy for training after 25 epochs but only 78% accuracy for testing. Hence, the best model overall is YOLO v9, with the highest overall accuracy of 86.1%.
In this paper, we propose an efficient internet-based logistics brokerage concept which can overcome the weakness of the traditional off-line method to intermediate between vehicle owners and shippers for matching empty vehicles and freights. For defining a business model based on the new concept and implementing an information system, it is necessary to analyze the business process for the internet-based logistics brokerage using a modeling methodology. In this paper, we analyze the logistics brokerage process using the UN/CEFACT Modeling Methodology (UMM) being utilized as a standard modeling methodology in the area of electronic commerce. After analyzing the business process, we can expect that the UMM can be used as a useful tool for modeling the business process of electronic commerce in which the description of the collaborative work is very important.
Alsulami, Fairouz;Alseleahbi, Hind;Alsaedi, Rawan;Almaghdawi, Rasha;Alafif, Tarik;Ikram, Mohammad;Zong, Weiwei;Alzahrani, Yahya;Bawazeer, Ahmed
International Journal of Computer Science & Network Security
/
v.22
no.9
/
pp.23-30
/
2022
Glaucoma is a chronic neuropathy that affects the optic nerve which can lead to blindness. The detection and prediction of glaucoma become possible using deep neural networks. However, the detection performance relies on the availability of a large number of data. Therefore, we propose different frameworks, including a hybrid of a generative adversarial network and a convolutional neural network to automate and increase the performance of glaucoma detection. The proposed frameworks are evaluated using five public glaucoma datasets. The framework which uses a Deconvolutional Generative Adversarial Network (DCGAN) and a DenseNet pre-trained model achieves 99.6%, 99.08%, 99.4%, 98.69%, and 92.95% of classification accuracy on RIMONE, Drishti-GS, ACRIMA, ORIGA-light, and HRF datasets respectively. Based on the experimental results and evaluation, the proposed framework closely competes with the state-of-the-art methods using the five public glaucoma datasets without requiring any manually preprocessing step.
The Journal of Asian Finance, Economics and Business
/
v.7
no.11
/
pp.469-477
/
2020
The main objective of this paper is to examine the applicability of Linan and Chen's entrepreneurial intention model (EIM) in predicting the entrepreneurial intention. EIM is an adaptation of the Theory of Planned Behavior that focuses on entrepreneurial intention and hypothesizing slightly different patterns of relationship with regards to subjective norms. The model also includes human capital and demographic factors. Snowball sampling method was used to collect data using the entrepreneurial intention questionnaire (EIQ) through several social media platforms. The survey indicates that the overall entrepreneurial intention of Saudi students is high (mean = 5.41). Eight out of the seventeen hypothesized relationships were found to be significant. Among the demographic variables, gender-personal attitude was significant whereas self employment experience and years of business education were found to be significantly related with perceived behavioral control. The statistical analysis using partial least square structural equation modelling validated the model. All the three antecedents of entrepreneurial intention were significantly related with entrepreneurial intention. The results of this study will help policy makers to get deep understanding into the phenomenon of entrepreneurship among Saudi university students and thereby develop a conducive environment. This study also validates the entrepreneurial intention model in a different cultural context.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.