• Title/Summary/Keyword: UIC Code

Search Result 33, Processing Time 0.031 seconds

The role of the government for the development of product-oriented fundamental technology for the EMU (전동차 제품환경 기반기술 구축에 대한 정부의 역할)

  • Choi, Yo-Han;Lee, Jae-Young;Kim, Yong-Ki;Lee, Kun-Mo
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.26-29
    • /
    • 2007
  • In Korean Electric Motor Unit(EMU) industry, the government should lead and drive the development of the product-oriented fundamental technologies(for example, Life Cycle Assessment, Environmental Labelling, Ecodesign, Eco-efficiency etc.) for the EMU. International Railway Union(UIC) establish UIC code 345: Environmental specification and it is based on using the product-oriented fundamental technologies. And also many foreign railway related companies already shown their environmental performance using the product-oriented fundamental technologies So, in Korean situation, it is important that let the EMU industrial player understand the importance of the product-oriented fundamental technology for the EMU and clarify who drive the development of the product-oriented fundamental technology for the EMU and what the type of driving forces.

  • PDF

Dynamic Analysis of Railway Vehicle Having Single Axle Bogie (1축 대차용 철도차량의 동특성 해석)

  • Yang, Hee-Joo;Oh, Taek-Yul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.84-89
    • /
    • 2001
  • Studied in this paper was the vehicle dynamics simulation for development of single axle bogie using the multi-body dynamics simulation program(VAMPIRE). Single axle bogie vehicle is to the crew of freight vehicle. Method of analysis for dynamic behaviors of vehicle having single axle bogie was carried by UIC(International Union of Railways) code 518 and results of analysis were presented in terms of the hunting stability and the derailment ratio and the sum of wheel/rail lateral force. The results of analysis meet the criteria proposed by UIC.

  • PDF

A Study on Line Classification for Efficient Maintenance of Railway Infrastructure (철도시설물 유지보수 효율화를 위한 선로등급 산정에 관한 연구)

  • Kim, In Kyum;Lee, Jun S.;Choi, Il-Yoon;Lee, Jeeha
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.672-684
    • /
    • 2016
  • UIC Codes 714R & 715R recommend the use of line classifications and their usage in maintenance work by employing notional traffic loads. However, the classification has not been applied to local lines and, therefore, a new line classification system based on UIC 714R has been proposed in this study. For this, various classification models of UIC, Germany, and UK have been studied first and equivalent traffic loads based on Korail's report, as well as on train timetables, have been derived. The results of the classifications have been compared with those of major European countries and it has been shown that the proposed classification is equivalent to the average value in the European cases. The line classification can be fully utilized during the decision making process of maintenance work and will also be used to model the Reliability Centered Maintenance (RCM) in the future.

Structural analysis of Aluminium coach body (알루미늄 객차의 구조강도 해석)

  • 이정수;서승일;이기열
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.583-588
    • /
    • 1998
  • Large extrusions of aluminium alloy can be more general and useful as structural material of rolling stocks to reduce weight and labor cost than mild steel and stainless steel. Our company is studying aluminium coach body will be made of 6005A and A5083 alloy. In this paper, at first detailed finite element analysis is carried out to calculate the orthotropic material properties of aluminium extrusions. And then global strength evaluation of coach body is carried out according to UIC 566 OR code.

  • PDF

Parametric study on Continuous Welded Rail and Bridge interaction (장대레일 궤도와 교량의 상호작용에 대한 매개변수 분석)

  • Kim, Jong-Min;Han, Sang-Yun;Lim, Nam-Hyoung;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.303-306
    • /
    • 2007
  • CWR(Continuous Welded Rail) and bridge interaction produce rail force, bridge displacement and rail/bridge relative displacement. Each of these has limitation by many codes. In this paper, analysis of interaction has been carried out by using foreign codes(UIC 774-3 R code of Europe etc.) because there is no code about interaction between rail and bridge in Korea. Recently, railway bridges with CWR has been constructed for structural and economical reasons. When designer plans railway bridges, design a bridge model first and then investigate railway forces and displacement by interaction analysis. If these results go out bounds from limitation, designer plans railway bridges again and again. In this paper, using the parametric study on CWR and railway bridge interaction, railway bridge parameters such as length of bridge span, area of bridge, moment of inertia, stiffness of pier, etc. are presented. It helps preliminary design of railway bridges.

  • PDF

Parametric Study on Properties of bridge by CWR(Continuous Welded Rail) and Bridge Interaction Analysis (장대레일과 교량의 상호작용 해석을 통한 교량제원 매개변수 분석)

  • Kim, Jong-Min;Han, Sang-Yun;Lim, Nam-Hyoung;Kang, Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1460-1465
    • /
    • 2007
  • CWR(Continuous Welded Rail) and bridge interaction produce rail force, bridge displacement and rail/bridge relative displacement. Each of these has limitation by many codes. In this paper, analysis of interaction has been carried out by using foreign codes(UIC 774-3 R code of Europe etc.) because there is no code about interaction between rail and bridge in Korea. Recently, railway bridges with CWR has been constructed for structural and economical reasons. When designer plans railway bridges, design a bridge model first and then investigate railway forces and displacement by interaction analysis. If these results go out bounds from limitation, designer plans railway bridges again and again. In this paper, using the parametric study on CWR and railway bridge interaction, railway bridge parameters such as length of bridge span, area of bridge, moment of inertia, stiffness of pier, etc. are presented. It helps preliminary design of railway bridges.

  • PDF

Parametric Study on Rail and Bridge Interaction (레일과 교량의 상호작용 매개변수 분석 연구)

  • Kim, Jong-Min;Han, Sang-Yun;Lim, Nam-Hyoung;Kim, Jung-Hun;Kang, Young-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.445-450
    • /
    • 2007
  • CWR(Continuous Welded Rail) and bridge interaction produce rail force, bridge displacement and rail/bridge relative displacement. Each of these has limitation by many codes. In this paper, analysis of interaction has been carried out by using foreign codes(UIC 774-3 R code of Europe etc.) because there is no code about interaction between rail and bridge in Korea. Recently, railway bridges with CWR has been constructed for structural and economical reasons. When designer plans railway bridges, design a bridge model first and then investigate railway forces and displacement by interaction analysis. If these results go out bounds from limitation, designer plans railway bridges again and again. In this paper, using the parametric study on CWR and railway bridge interaction, railway bridge parameters such as length of bridge span, area of bridge, moment of inertia, stiffness of pier, etc. are presented. It helps preliminary design of railway bridges.

  • PDF

The Loading History Effect on the Track-bridge Interaction (궤도-교량의 상호작용에 대한 하중이력의 영향)

  • Yun, Kyung-Min;Han, Sang-Yun;Hwang, Man-Ho;Kim, Hae-Gon;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3156-3159
    • /
    • 2011
  • In case of the continuous welded rail(CWR) track is supported by the railway bridge, the additional axial force is occurred in the CWR due to the track-bridge interaction. In the various design codes such as Korean code, European code, UIC code, etc, three important loads(temperature variation in the bridge-deck, braking/acceleration and the bending of the bridge-deck resulted from the passing train) are treated as the independent loading case. In other words, the additional axial force can be obtained by summing up the three different values calculated by the three independent analysis. However, this analysing method may have an error because the behavior of the longitudinal resistance between the rail and the bridge-deck is under the highly nonlinear. Therefore, in order to exactly analyse the track-bridge interaction, nonlinear loading history and the change of the longitudinal resistance owing to the loading history must be considered in the analysis process. In this study, the loading history effect on the track-bridge interaction is investigated considering the resonable combination of three loads and the longitudinal resistance change.

  • PDF

Durability Evaluation of the Korean Gauge - Adjustable Wheelset System (궤간가변 윤축시스템의 내구성 평가)

  • Ahn, Seung-Ho;Chung, Kwang-Woo;Jang, Seung-Ho;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5669-5675
    • /
    • 2012
  • To reduce the cost and the time of transport in Eurasian railroad networks such as TKR(Trans-Korea Railway), TCR(Trans-China Railway) and TSR(Trans-Siberia Railway) owing to the problem of different track gauges (narrow/standard/broad gauge), it is important to develop the gauge-adjustable wheelset(GAW) system to adapt easily to these gauges. The Korean GAW system is developing and will be adapting to the brand new freight trains' to improve the conventional overseas GAW system. In this study, structural and durability analyses are performed from the viewpoint of the safe-life design. The core parts of the system might be safe in range of $1{\times}10^7$ cycles from the result of durability analysis. Moreover, to examine the safety of the system while running on a track, rig fatigue test was performed according to UIC code. The safety of the Korean GAW system is demonstrated through testing that all safety-relevant conditions are satisfied.

Running safety analysis of the high speed railway vehicle (HEMU-400X) (차세대 고속철도(HEMU-400X)의 주행 안전성 평가)

  • Sim, Kyung-Seok;Park, Tae-Won;Kim, Wook-Hyun;Choi, Ji-Hun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1862-1867
    • /
    • 2011
  • Recently, a railway vehicle of the maximum speed of 350km/h or more high speed has been developed in the developed country. The next-generation railway vehicle(HEMU-400X) is being developed for aim to run over 430km/h in Republic of Korea, too. The safety of the railway vehicle should be conformed before manufacturing the railway vehicle. In this study, the next generation high-speed railway vehicle was modeled as a single-car system using commercial dynamic program ADAMS/Rail. Safety analysis was implemented through the international standard of the UIC 518 OR code. Also, appropriateness of the railway vehicle design variable were conformed by safety analysis results.

  • PDF