• 제목/요약/키워드: UHV-STM

검색결과 18건 처리시간 0.023초

Uniform Ag Thin Film Growth on an Sb-terminated Si(111) Surface

  • Park, Kang-Ho;Ha, Jeong-Sook;Lee, El-Hang
    • ETRI Journal
    • /
    • 제19권2호
    • /
    • pp.71-81
    • /
    • 1997
  • We report on the room-temperature-growth of highly uniform and ultrathin Ag films on Sb-terminated Si(111) surfaces, as evidenced from a scanning tunneling microscopy (STM) study in an UHV system. With predeposition of one monolayer (ML) of Sb, uniform growth of Ag islands was observed at room temperature. The Sb layer suppresses the surface diffusion of Ag atoms on Si surface and increases the Ag island density, and then the increased island density is believed to cause coalescence of Ag islands before the beginning of multilayer growth in higher coverages, resulting in the growth of atomically flat and uniform islands on the Sb surfactant layer.

  • PDF

STM tip/Viologen 분자의 Barrier특성과 모폴로지 촉정 (Study on barrier characteristics of STM tip/Viologen molecules and morphology)

  • 이남석;최원석;;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.91-92
    • /
    • 2006
  • The electrical properties of viologen derivatives were studied in terms of the tunneling current characteristics on the length of the viologen derivatives using self-assembling techniques and ultra high vacuum scanning tunneling microscopy (UHV-STM). We fabricated the Au substrate were deposited by thermal evaporation system ($420^{\circ}C$. Self-assembled monolayers (SAMs) were prepared on Au (111), which had been thermally deposited onto freshly cleaved, heated mica. The Au substrate was exposed to a 1 mM solution of viologen derivatives in ethanol for 24 hours to form a monolayer. We measurement of the morphology on the single viologen molecules ($VC_{8}SH$, $VC_{10}SH$, $HSC_{8}VC_{8}SH$, and $HSC_{10}VC_{10}SH$). The current-voltage (I-V) and differential conductance (dl/dV-V) properties were measured while the electrical properties of the formed monolayer were scanned by using a STS. The effective barrier height of viologen derivatives ($VC_{8}SH$, $VC_{10}SH$, $HSC_{8}VC_{8}SH$, and $HSC_{10}VC_{10}SH$) were calculated to be 1.076 eV, 1.56 ${\pm}$ 0.3 eV, 1.85 eV, 2.28 eV, respectively.

  • PDF

STM에 의한 니트로벤젠 분자의 NDR 특성과 에너지 밴드 구조 (NDR Property and Energy Band Diagram of Nitro-Benzene Molecule Using STM)

  • 이남석;장정수;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.139-141
    • /
    • 2005
  • It is possble to study charge transfer property which is caused by height variation because we can see the organic materials barrier height and STM tip by organic materials energy band gap. Here, we investigated the negative differential resistance(NDR) and charge transfer property of self-assembled 4,4-Di(ethynylphenyl)-2'-nitro-1-(thioacetyl)benzene, which has been well known as a conducting molecule. Self-assembly monolayers(SAMs) were prepared on Au(111), which had been thermally deposited onto pre-treatment($H_{2}SO_{4}:H_{2}O_{2}$=3:1) Si. The Au substrate was exposed to a 1 mM/l solution of 1-dodecanethiol in ethanol for 24 hours to form a monolayer. After thorough rinsing the sample, it was exposed to a $0.1{\mu}M/1$ solution of 4,4-Di(ethynylphenyl)-2'-nitro-1-(thioacetyl)benzene in dimethylformamide(DMF) for 30 min and kept in the dark during immersion to avoid photo-oxidation. After the assembly, the samples were removed from the solutions, rinsed thoroughly with methanol, acetone, and $CH_{2}Cl_{2}$, and finally blown dry with $N_2$. Under these conditions, we measured electrical properties of self-assembly monolayers(SAMs) using ultra high vacuum scanning tunneling microscopy(UHV-STM). The applied voltages were from -1.50 V to -1.20 V with 298 K temperature. The vacuum condition is $6{\times}10^{-8}$ Torr. As a result, we found that NDR and charge transfer property by a little change of height when the voltage is applied between STM tip and electrode.

  • PDF

STM/STS에 의한 Au(111) 표면에 자기조립된 니트로분자의 전기적 특성 측정 (Study on Electrical Characteristic of Self-assembled Nitro Molecule Onto Au(111) Substrate by Using STM/STS)

  • 이남석;권영수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권1호
    • /
    • pp.16-19
    • /
    • 2006
  • The characteristic of negative differential resistance(NDR) is decreased current when the applied voltage is increased. The NDR is potentially very useful in molecular electronics device schemes. Here, we investigated the NDR characteristic of self-assembled 4,4'-di(ethynylphenyl)-2'-nitro-1-benzenethiolate, which has been well known as a conducting molecule. Self-assembly monolayers(SAMs) were prepared on Au(111), which had been thermally deposited onto $pre-treatment(H_2SO_4:H_2O_2=3:1)$ Si. The Au substrate was exposed to a 1 mM/1 solution of 1-dodecanethiol in ethanol for 24 hours to form a monolayer. After thorough rinsing the sample, it was exposed to a 0.1 ${\mu}M/l$ solution of 4.4'-di(ethynylphenyl)-2'-nitro-1-(thioacetyl)benzene in dimethylformamide(DMF) for 30 min and kept in the dark during immersion to avoid photo-oxidation. After the assembly, the samples were removed from the solutions, rinsed thoroughly with methanol, acetone, and $CH_2Cl_2,$ and finally blown dry with N_2. Under these conditions, we measured electrical properties of self-assembly monolayers(SAMs) using ultra high vacuum scanning tunneling microscopy(UHV-STM). The applied voltages were from -2 V to +2 V with 298 K temperature. The vacuum condition was $6{\time}10^{-8}$ Torr. As a result, we found the NDR voltage of the 4,4'-di(ethynylphenyl)-2'-nitro-1-benzenethiolate were $-1.61{\pm}0.26$ V(negative region) and $1.84{\pm}0.33$ V(positive region). respectively.

마이크로 전자빔 시스템을 위한 전자광학렌즈의 제작에 의한 나노 패턴 형성 (Nano-scale pattern delineation by fabrication of electron-optical lens for micro E-beam system)

  • 이용재;박정영;전국진;국양
    • 전자공학회논문지D
    • /
    • 제35D권9호
    • /
    • pp.42-47
    • /
    • 1998
  • 현재의 전자빔 묘화의 한계를 극복할 수 있는 마이크로 전자빔 시스템의 전자 광학 렌즈를 제작하였고 전자빔 묘화실험을 통하여 이를 검증하였다. 마이크로머시닝기술을 이용하여 실리콘 전극을 제작하고 이를 양극 접합을 통해 조립하여 다층 전극의 전자 광학 렌즈를 제작하였다. 완성된 전자 광학 소자를 초고진공 챔버에 장착하여, STM(Scanning Tunneling Microscope) 팁에서 방출된 전자빔의 focusing 특성을 관찰하였으며 전자를 집속하여 리소그라피를 수행하였다. E-beam 감광막은 PMMA(Poly-methylmethacrylate)를 사용하였고 0.13㎛의 패턴을 형성시킬 수 있었다.

  • PDF

STM/STS에 의한 Au (111)에 자기조립된 니트로분자의 전기적 특성 측정 (Study on electrical property of self-assembled nitro molecule onto Au(111) by Using STM/STS)

  • 이남석;최원석;신훈규;장정수;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.1844-1846
    • /
    • 2005
  • The characteristic of negative differential resistance(NDR) is decreased current when the applied voltage is increased. The NDR is potentially very useful in molecular electronics device schemes. Here, we investigated the NDR property of self-assembled 4,4- Di(ethynylphenyl)-2'-nitro-1-(thioacetyl)benzene, which has been well known as a conducting molecule. Self-assembly monolayers(SAMs) were prepared on Au(111), which had been thermally deposited onto pre-treatment$(H_2SO_4:H_2O_2=3:1)$ Si. The Au substrate was exposed to a 1mM/l solution of 1-dodecanethiol in ethanol for 24 hours to form a monolayer. After thorough rinsing the sample, it was exposed to a $0.1{\mu}M/l$ solution of 4,4-Di(ethynylphenyl)-2'-nitro-1-(thioacetyl)benzene in dimethylformamide(DMF) for 30 min and kept in the dark during immersion to avoid photo-oxidation. After the assembly, the samples were removed from the solutions, rinsed thoroughly with methanol, acetone, and $CH_2Cl_2$, and finally blown dry with $N_2$. Under these conditions, we measured electrical properties of self-assembly monolayers(SAMs) using ultra high vacuum scanning tunneling microscopy(UHV-STM). The applied voltages were from -2V to +2V with 299K temperature. The vacuum condition is $6{\times}10^{-8}$ Torr. As a result, we found the NDR voltage of the nitro-benzene is $-1.61{\pm}0.26$ V(negative region) and $1.84{\pm}0.33$ (positive region), respectively.

  • PDF

Switching of the Dimer-row Direction through Sb-passivation on Vicinal Si(001) Surface of a Single Domain

  • ;김희동;서재명
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.186-186
    • /
    • 2011
  • [100] 방향으로 4$^{\circ}$ 기울어진 Si(001)-2${\times}$1(vicinal surface)을 초고진공하(UHV)에서 청결하게 하고 열처리하면 rebonded-atom을 가진 DB double step과 이 step에 나란한 아홉 개의 dimer를 가진 평균 폭이 4.0 nm인 single-domain의 (001)-2${\times}$1 테라스의 면으로 재구조된다 [그림 a]. 본 연구에서는 이 표면 위에 Sb을 상온에서 증착하여 덮고 후열처리하면(2 ML, 500$^{\circ}C$ 10 분), Sb-dimer가 Si 표면을 한 층 덮고 (001) 테라스의 Sb-dimer 방향이 DA double-step과 수직을 이루는 1${\times}$2 구조를 이룬다는 사실을 STM으로 확인하였다 [그림 b]. 이러한 Sb-passivation의 효과는 표면 Si-dimer의 부분적으로 채워진 dangling-bond를 Sb-dimer의 완전히 채워진 고립쌍(lone-pair)으로 바꿈으로써 표면 자유 에너지를 줄이고, 나아가 계면 Si 층은 bulk에 유사하게 되는 데에 있다. 이 passivation 된 표면은 Ge/Si 등의 heteroepitaxy에 사용할 수 있고, 특히 single-domain을 유지하며 step 방향에 대해 평행인 dimer-row로 이루어져 있어서 원자나 전자의 이동에 비등방적 효과를 증가시킬 것이 예측된다.

  • PDF

Scanning Tunneling Microscopy Study of Alcohol Adsorption on NiAl(110) Deposited by Pulsed Injection

  • Choi, Eun-Yeoung;Lee, Youn-Joo;Lyo, In-Whan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.353-353
    • /
    • 2010
  • Alcohol is a vesatile polar solvent for molecules. As a preparation to deposit large molecules, we studied interaction of solvent molecules on metallic surface. in this work, we report on methanol adsorption on NiAl(110) with scanning tunneling microscopy (STM). These alcohol solvent molecules were deposited by a pulse injection method suitable for deposition of thermally unstable molecules. The injection of liquid alcohol onto the substrate in UHV was performed by using a high-speed solenoid valve with the back-pressure reduced down to 100 Torr. This technique allowed precise control over the amount of dosing of molecules to less than 1 L. Alcohol-induced features, attributed to methoxy, were found on bare NiAl(110) surface.

  • PDF