• Title/Summary/Keyword: UHPC(ultra-high-performance concrete)

Search Result 192, Processing Time 0.03 seconds

An Assessment of Bonding Shear Performance of Ultra-high-performance Concrete Regarding Interface Treatment (표면처리방법에 따른 초고성능 콘크리트의 전단부착성능 평가 연구)

  • Jang, Hyun-O;Park, Jin-Ho;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.81-82
    • /
    • 2016
  • The present study aims to derive optimal interface treatment conditions for emulating a monolithic construction. The joints in this construction are formed through the bonding shear evaluation method during the placement of ultra-high-performance concrete (UHPC) and normal strength concrete (NSC). The evaluation items include push-off tests for homogeneous UHPC + UHPC and heterogeneous NSC + UHPC. The experimental samples comprised a monolithic placement as the baseline, two levels for the separated placement according to the compression strength of concrete, and five levels for the interface treatment. The increase in the number of grooves and their cross-sectional areas only slightly influenced the bonding shear performance. The optimal interface treatment method for the homogeneous UHPC + UHPC construction grooves was at least 30mm. The heterogeneous NSC + UHPC construction should utilize waterjet roughening to expose the aggregate for the increased roughness.

  • PDF

Mix design and Performance Rvaluation of Ultra-high Performance Concrete based on Packing Model (패킹모델 이용한 초고성능 콘크리트 배합설계 및 성능 평가)

  • Yan, Si-Rui;Jang, Jong-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.94-95
    • /
    • 2020
  • This paper introduces the mix design and performance evaluation of Ultra-High Performance Concrete (UHPC). The concrete mixture is designed to achieve a densely compacted cementitious matrix via the modified Andreasen & Andersen particle packing model. The compressive strengths of UHPC designed by this method reached 154MPa. The relationship between packing theory and compressive strength of UHPC is discussed in this paper.

  • PDF

Sensitive Product Design of Ultra High Performance Concrete (UHPC) (감성 콘크리트 블루투스 스피커 (콩스) 제품 디자인)

  • Kim, Kyuong-Hwan;Kim, Byoung-Il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.197-198
    • /
    • 2020
  • A study was conducted on UHPC production using the silicone mold method. UHPC (Ultra-High-Performance Concrete) has the advantage of being able to shape the product in a free-form shape on concrete, but when mass-producing products in one design, such as electronic products, rather than one-time products such as buildings and decorations Demolition is difficult with wood and mold. This study uses silicone molds, UHPC mix to ensure fluidity, self-integrating performance and mechanical performance Prototyping was done proportionally.

  • PDF

Effect of Fiber Hybridization on Durability Related Properties of Ultra-High Performance Concrete

  • Smarzewski, Piotr;Barnat-Hunek, Danuta
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.315-325
    • /
    • 2017
  • The purpose of the paper is to determine the influence of two widely used steel fibers and polypropylene fibers on the sulphate crystallization resistance, freeze-thaw resistance and surface wettability of ultra-high performance concrete (UHPC). Tests were carried out on cubes and cylinders of plain UHPC and fiber reinforced UHPC with varying contents ranging from 0.25 to 1% steel fibers and/or polypropylene fibers. Extensive data from the salt resistance test, frost resistance test, dynamic modulus of elasticity test before and after freezing-thawing, as well as the contact angle test were recorded and analyzed. Fiber hybridization relatively increased the resistance to salt crystallization and freeze-thaw resistance of UHPC in comparison with a single type of fiber in UHPC at the same fiber volume fraction. The experimental results indicate that hybrid fibers can significantly improve the adhesion properties and reduce the wettability of the UHPC surface.

Modeling of temperature history in the hardening of ultra-high-performance concrete

  • Wang, Xiao-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.273-284
    • /
    • 2014
  • Ultra-high-performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder ratios are 0.15 to 0.20 with 20 to 30% silica fume. In the production of ultra-high performance concrete, a significant temperature rise at an early age can be observed because of the higher cement content per unit mass of concrete. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of ultra-high performance concrete. The heat evolution rate of UHPC is determined from the contributions of cement hydration and the pozzolanic reaction. Furthermore, by combining a blended-cement hydration model with the finite-element method, the temperature history in the hardening of UHPC is evaluated using the degree of hydration of the cement and the silica fume. The predicted temperature-history curves were compared with experimental data, and a good correlation was found.

Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges

  • Abbas, S.;Nehdi, M.L.;Saleem, M.A.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.3
    • /
    • pp.271-295
    • /
    • 2016
  • In this study, an extensive literature review has been conducted on the material characterization of UHPC and its potential for large-scale field applicability. The successful production of ultra-high performance concrete (UHPC) depends on its material ingredients and mixture proportioning, which leads to denser and relatively more homogenous particle packing. A database was compiled from various research and field studies around the world on the mechanical and durability performance of UHPC. It is shown that UHPC provides a viable and long-term solution for improved sustainable construction owing to its ultrahigh strength properties, improved fatigue behavior and very low porosity, leading to excellent resistance against aggressive environments. The literature review revealed that the curing regimes and fiber dosage are the main factors that control the mechanical and durability properties of UHPC. Currently, the applications of UHPC in construction are very limited due to its higher initial cost, lack of contractor experience and the absence of widely accepted design provisions. However, sustained research progress in producing UHPC using locally available materials under normal curing conditions should reduce its material cost. Current challenges regarding the implementation of UHPC in full-scale structures are highlighted. This study strives to assist engineers, consultants, contractors and other construction industry stakeholders to better understand the unique characteristics and capabilities of UHPC, which should demystify this resilient and sustainable construction material.

Recent Advances in Ultra-high Performance Concrete

  • Kim, Yail J.
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.163-172
    • /
    • 2013
  • This paper presents a comprehensive review of recent advances in ultra-high performance concrete (UHPC). Fundamental characteristics of UHPC are elaborated with focus on its material constituents, mixing, and formulation procedures. Use of state-of-the-art materials such as carbon nanotubes or nano-silica is discussed as well, whose inclusion may enhance the performance of UHPC. The review evaluates supplementary treatment methods (e.g., pressuring curing) and identifies applicable standard test methods for determining the properties and behavior of UHPC. Site implementation is provided to link laboratory research with full-scale application. Research needs are suggested to further develop UHPC technologies from technical and socio-economical perspectives.

Bond Characteristics of Ultra High Performance Concrete (초고성능 콘크리트(UHPC)의 부착특성에 관한 연구)

  • Kook, Kyung-Hun;Shin, Hyun-Oh;Kwahk, Im-Jong;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.753-760
    • /
    • 2010
  • Ultra high performance concrete (UHPC), is characterized by its high compressive strength and advanced tensile behavior that is much superior to those of conventional concrete. In order to apply this new material in practice, the bond characteristics of UHPC were evaluated in this study. Pull-out tests between UHPC and deformed steel rebar were carried out according to the modified RILEM test method, and were verified by finite element analysis. From the test results showed that UHPC presents 5 to 10 times higher bond strength compared to normal strength concrete, this study suggested remarkably reduced development length and concrete cover comparing to existing specifications. The test results of 700 MPa high strength steel rebar demonstrated the applicability of high strength steel to UHPC. In addition, the transfer length measurements of seven-wire strand in UHPC specimens indicated that the transfer length limit set by the current design code is very conservative for UHPC.

The Design Guidelines for the Tensile Behavior of Ultra-High Performance Concrete (초고성능 콘크리트의 인장거동 설계기준 정립에 관한 연구)

  • Kang, Su-Tae;Joh, Chang-Bin;Park, Jong-Sup;Park, Jung-Jun;Ryu, Gum-Sung;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.361-364
    • /
    • 2008
  • To design structures with Ultra High Performance Concrete (UHPC), it is necessary to estimate the mechanical properties first of all. The most attractive characteristics of UHPC are the considerable tensile strength and behavior. Therefore the most important thing in order to properly design UHPC structures is to establish the constitutive model to represent the tensile behavior of UHPC. In this study, it was tried to find out the tensile behavior of UHPC by experiments and analyses. Through comparisons with the French SETRA/AFGC recommendations and the Japanese recommendations for the Ultra High-Strength Fiber-Reinforced Concrete Structures, a reasonable model which could represent the tensile stress-strain relationship in the structural design was proposed

  • PDF

Axial behavior of FRP-wrapped circular ultra-high performance concrete specimens

  • Guler, Soner
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.709-722
    • /
    • 2014
  • Ultra-High Performance Concrete (UHPC) is an innovative new material that, in comparison to conventional concretes, has high compressive strength and excellent ductility properties achieved through the addition of randomly dispersed short fibers to the concrete mix. This study presents the results of an experimental investigation on the behavior of axially loaded UHPC short circular columns wrapped with Carbon-FRP (CFRP), Glass-FRP (GFRP), and Aramid-FRP (AFRP) sheets. Six plain and 36 different types of FRP-wrapped UHPC columns with a diameter of 100 mm and a length of 200 mm were tested under monotonic axial compression. To predict the ultimate strength of the FRP-wrapped UHPC columns, a simple confinement model is presented and compared with four selected confinement models from the literature that have been developed for low and normal strength concrete columns. The results show that the FRP sheets can significantly enhance the ultimate strength and strain capacity of the UHPC columns. The average greatest increase in the ultimate strength and strain for the CFRP- and GFRP-wrapped UHPC columns was 48% and 128%, respectively, compared to that of their unconfined counterparts. All the selected confinement models overestimated the ultimate strength of the FRP-wrapped UHPC columns.