• Title/Summary/Keyword: UHMWPE fibers

Search Result 14, Processing Time 0.028 seconds

Physical Properties of Ultrahigh Molecular Weight Polyethylene(UHMWPE) Tape Yarns Produced by the Compaction/Drawing Method

  • Jo Hwan;Lee, Seung-Gu;Hwan, Ju-Chang
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.410-413
    • /
    • 1998
  • Since early of 1980's, high. performance fiber has been developed by processing of ultrahigh molecular weight polyethylene(UHMWPE). UHMWPE fibers have high strength high modulus and excellent impact properties due to the strong C-C bond. Furthermore, the specific gravity of UHMWPE fibers is less than 1.0g/$\textrm{cm}^2$, which makes it possible to produce composites that combine good mechanical properties with low specific mass. (omitted)

  • PDF

Synthesis of a Super Hydrophobic Violet Dye for Pure Polyolefin(PP/UHMWPE) Fibers (순수 폴리올레핀(PP/UHMWPE) 소재용 초소수성 보라색 염료의 합성)

  • Kim, Taekyeong;Lee, Changwhan
    • Textile Coloration and Finishing
    • /
    • v.25 no.3
    • /
    • pp.165-171
    • /
    • 2013
  • A new monoazo violet dye optimized for polyolefin fibers such as polypropylene and ultra high molecular weight polyethylene fibers was synthesized and its dyeability was investigated. Two hexyl groups were introduced to coupler, 2,5-dimethoxyaniline, in order to increase hydrophobicity of the dye. The maximum absorption wavelength was appeared at 580nm, which meant that the dye showed violet color. From the dyeing results at various conditions, the optimum dyeing was determined as $130^{\circ}C$ for 1 hour with 5% owf of dyes. The good fastness ratings to washing, rubbing were obtained showing at least 4 for both fibers. Light fastness was acceptable for polypropylene fibers giving ratings 3~4. However, relatively poor light fastness was obtained in case of ultra high molecular weight polyethylene fibers showing ratings 2.

Accelerated Life Test of Knife Protection Fabrics for Cut Resistance (절단 방지용 방검소재의 가속수명시험)

  • Chang, Gap-Shik;Jung, Ye-Lee;Jeon, Byong-Dae
    • Journal of Applied Reliability
    • /
    • v.15 no.4
    • /
    • pp.270-275
    • /
    • 2015
  • Purpose : UHMWPE (Ultra-high-molecular-weight-polyethylene) is one of the most widely used material in knife protection clothes because of high strength, elasticity, and light weight. The purpose of this study is to develop the accelerated life test method and predict the lifetime for the knife protection fabric composed by UHMWPE. Methods : In this study, degradation characteristics of UHMWPE fibers and knife protection fabric for cut resistance were evaluated under the hydrolysis and photo-degradation conditions. It was found out that the degradation rate of retained tensile strength was more significant in the photo-degradation than hydrolysis. Therefore, the failure time was determined as the time that the retained tensile strength in photo-degradation is less than 50%. Considering an acceleration factor for irradiance and exposure time, the lifetime was predicted from the calculated failure time. Results : As a result of the accelerated life test, the $B_{10}$ lifetime of knife protection fabric composed by UHMWPE fibers is estimated as 2.8 years for a 90% statistical confidence level. Conclusion: Since the lifetime is predicted by the view-point of radiant exposure in this study, there is a possibility that the estimated lifetime may differ from the actual lifetime. However, it is considered as an useful methodology to estimate the long-term lifetime of knife protection fabrics.

Dyeing of Ultra High Molecular Weight Polyethylene Fibers with Diamino-anthraquinoid Blue Disperse Dyes Having Linear Long Alkyl Substituents (선형의 장쇄 알킬치환기를 가지는 디아미노안트라퀴논계 청색 분산염료에 의한 초고분자량 폴리에틸렌 섬유의 염색)

  • Kwak, Dong-Sup;Kim, Tae-Kyeong
    • Textile Coloration and Finishing
    • /
    • v.24 no.3
    • /
    • pp.180-188
    • /
    • 2012
  • Following the reported study that showed the dyeability of diamino-anthraquinoid blue dyes substituted with relatively shorter alkyl groups, the longer aliphatic substituents than pentyl group were examined in terms of the color strength and fastness properties toward UHMWPE fibers. The color strength was increased up to pentyl group and then gradually decreased. However, the fastness properties were improved continuously to octyl group which was the longest alkyl substituent in this study. The most effective maximum color strength was obtained at $130^{\circ}C$ for 2 hours with 3% owf of dyes. The overall fastnesses to washing, rubbing, and light were good enough for practical uses.

Synthesis of Super Hydrophobic Orange Dyes Having Maximum Absorption at 450-500nm for Pure Polyolefin Fibers (450-500nm의 최대흡수를 가지는 순수 폴리올레핀 소재용 초소수성 오렌지 염료의 합성)

  • Kim, Taekyeong;Ryu, Myeonghwa
    • Textile Coloration and Finishing
    • /
    • v.26 no.3
    • /
    • pp.165-172
    • /
    • 2014
  • Novel super hydrophobic orange dyes having maximum absorption band at 450-500nm were synthesized to dye polyolefin fibers such as polypropylene and ultra high molecular weight polyethylene fibers, using 4-alkylanilines and ${\beta}$-naphthol. Their absorption spectra at visible range showed almost the same, which meant that the alkyl substituents introduced to chromophore did not affect on color appearance of the dyes. Considering both color strength and wash fastness, the decyl-substituted dye was determined as the optimum one practically. From the dyeing results at various conditions, the optimum dyeing was $130^{\circ}C$ for 1 hour with 5% owf of dyes. The good fastness ratings to washing, rubbing were obtained showing 4-5 for both fibers. Light fastness was also acceptable giving rating 3-4 for polypropylene fibers and rating 3 for ultra high molecular weight polyethylene fibers.

A Study on the Impact Behavior of Bulletproof Materials According to the Combining Method

  • Jihyun Kwon;Euisang Yoo
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.157-164
    • /
    • 2022
  • Representative bulletproof materials, such as aramid or ultra-high molecular weight polyethylene(UHMWPE), have excellent strength and modulus in the plane direction but are very vulnerable to forces applied in the thickness direction. This paper reports a study on the effects of reinforcement in the thickness direction when bulletproof composite fabrics are prepared to improve their performance. Aramid and UHMWPE fabrics were combined using the film-bonding, needle-punching, or stitching methods and then subjected to low-velocity projectile and ball-drop impact tests. The results of the low-velocity projectile test indicated that the backface signature(BFS) decreased by up to 29.2% in fabrics obtained via the film-bonding method. However, the weight of the film-bonded fabric increased by approximately 23% compared with that obtained by simple lamination, and the fabric stiffened on account of the binder. Flexibility, light weight for wearability, and excellent bulletproof performance are very important factors in the development of bulletproof materials. When the needle-punching method was used, the BFS increased as the fibers sustained damage by the needle. When the composite fabrics were combined by stitching, no significant difference in weight and thickness was observed, and the BFS showed similar results. When a diagonal stitching pattern was employed, the BFS decreased as the stitching density increased. By contrast, when a diamond stitching pattern was used, the fabric fibers were damaged and the BFS increased as the stitching density increased.

Synthesis of Super Hydrophobic Disazo Red Dyes using Alkylanilines as Diazo Components (알킬아닐린을 디아조성분으로 활용한 디스아조계 초소수성 적색염료의 합성)

  • Kim, Taekyeong;Ryu, Myeonghwa;Jang, Youngjae
    • Textile Coloration and Finishing
    • /
    • v.27 no.1
    • /
    • pp.27-34
    • /
    • 2015
  • Novel super hydrophobic disazo red dyes were synthesized to improve light fastness of the primary monoazo red dye of previous study on polyolefin fibers such as polypropylene and ultra high molecular weight polyethylene fibers. 4-Alkylanilines were diazotized and then coupled to 2,5-dimethylaniline to produce dye intermediates which were then further used to synthesize final disazo red dyes by diazoization and coupling to ${\beta}$-naphthol. Considering both affinity of the dyes toward both polyolefin fibers and color fastnesses, the decyl-substituted dye was determined as the optimum dye. The decyl-substituted disazo red dye exhibited good dyeability on both polyolefin fibes and almost the same color values as the previous primary monoazo red dye. Light fastness on ultra high molecular weight polyethylene fibers was improved up to rating 3~4 compared to rating 2~3 of the previous primary monoazo red dye.

Dyeing of Ultra High Molecular Weight Polyethylene Fiber Using Anthraquinoid Super-hydrophobic Navy Dyes (안트라퀴논계 초소수성 네이비 염료를 이용한 초고분자량 폴리에틸렌 섬유의 염색)

  • Kim, Taekyeong;Ma, Heejung
    • Textile Coloration and Finishing
    • /
    • v.31 no.2
    • /
    • pp.98-106
    • /
    • 2019
  • The dyeability and fastness properties of super-hydrophobic navy dyes having different length of alkyl groups were investigated on ultra high molecular weight polyethylene fabrics. Those dyes exhibited strong color strength in the wavelength of mainly 550~650nm, which meant that they were navy color. From the results accomplished under various dyeing conditions, it can be concluded that those dyes have higher affinity on the fibers at $130^{\circ}C$ than at the lower dyeing temperature. Considering processing time and thermal damage of the fibers, one hour is good enough to obtain full strength of color. Maximum color strength was obtained at 2~3%owf of pure dyes. Except for the rub fastness under dry condition, all fastness such as to washing and light showed as good as of 4~5 ratings.