• Title/Summary/Keyword: UHF radio

Search Result 148, Processing Time 0.03 seconds

Long Reading Range Yagi-Uda UHF RFID Tag Antennas with Small Back-Lobe (후엽이 작은 장거리 인식용 Yagi-Uda UHF RFID 태그 안테나 설계)

  • Lee, Kyoung-Hwan;Chung, You-Chung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.11
    • /
    • pp.1211-1216
    • /
    • 2007
  • Yagi-Uda UHF RFID(Radio Frequency Identification) tag antennas with long reading range have been designed. According to ISO-18000, EIRP(Effective Isotropic Radiation Power) of reader and reader antenna is limited as 36 dBm. Therefore, the gain of a tag antenna should be high enough to extend the reading range. Yagi-Uda antenna has been applied to a UHF RFID tag antenna, and high gain and long reading range have been achieved. Three different of Yagi-Uda UHF antennas have been optimized to achieve the small size with low back-lobe patterns. The sizes, reading ranges and return loss of Yagi-Uda tag antennas are compared and measured.

Self Localization of Mobile Robot Using UHF RFID Landmark

  • Kwon, Hyouk-Gil;Kim, Min-Sik;Ryu, Je-Goon;Shim, Hyeon-Min;Lee, Eung-Hyuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1606-1611
    • /
    • 2005
  • The goal of this paper is to develop a self localization of mobile robot using UHF RFID landmark. We present landmark, a location sensing archetype system that uses UHF Radio Frequency Identification (UHF RFID) technology for locating objects inside buildings. The major advantage of landmark is that it improves the overall accuracy of locating objects by utilizing the concept of reference tags. Based on experimental analysis, we demonstrate that passive UHF RFID is a viable and cost-effective candidate for indoor location sensing. We conduct a series of experiments to evaluate performance of the positioning of the landmark System. In the standard setup, we place RF Reader which has two antennas and 25 tags in our lab. This research uses the assumption-based coordinates (ABC) algorithm[3] for determining the localization of robot. Also, we show how Radio Frequency Identification (UHF RFID) can be used in robot-assisted indoor navigation for the visually impaired. The experiments illustrate that passive UHF RFID tags can act as reliable landmark that trigger local navigation behaviors to achieve global navigation objectives.

  • PDF

Development of the EM Wave Absorber for Preventing RFID Reader Interference in UHF band (UHF대역 RFID 리더 간섭방지용 전파흡수체 개발)

  • Park, Soo-Hoon;Choi, Chang-Mook;Song, Young-Man;Kim, Dong-Il;Jung, Ji-Won;Kim, Ki-Man
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.349-353
    • /
    • 2008
  • In this paper, the EM wave absorber was designed and fabricated for preventing Reader Interference of RFID communication system in UHF band We fabricated several samples in different composition ratios of Amorphous and CPE(Chlorinated Polyethylene). Absorption abilities were simulated in accordance with different thicknesses of the prepared absorbers and changed complex relative permittivity and permeability due to composition ratio. The mixing ratio of Amorphous and CPE was searched as 80 : 20 wt.% by experiments and simulation. Then the EM wave absorber was fabricated and tested using the simulated data. As a result, the developed EM wave absorber has a thickness of 4 mm and absorption ability was over 20 dB in frequency range of $860\;MHz{\sim}960\;MHz$. Therefore, it was confirmed that the developed absorber can be used for suppressing RFID reader interference in UHF band.

Impedance Tuning and Matching Characteristics of UHF RFID Tag for Increased Reading Range (인식거리 향상을 위한 UHF 대역 RFID 태그 임피던스 정합 설계)

  • Lee, Jong-Wook;Kwon, Hong-Il;Lee, Bom-Son
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.279-284
    • /
    • 2005
  • We investigated the impedance matching characteristics of UHF-band RFID tag antenna and tag chip for increased reading range. A voltage multiplier designed using 0.4 $\mu$m zero-$V_T$ MOSFET showed that DC output voltage of about 2 V can be obtained using standard CMOS process. The input impedance of the voltage multiplier was examined to achieve impedance matching to the RFID tag antenna using analytical and numerical approaches. The input impedance of the voltage multiplier could be varied in a wide range by selecting the size of MOSFET and the number of multiplying stages, and thus can be impedance matched to a tag antenna in presence of other tag circuit blocks. A meander line inductively-coupled RFID tag antenna operating at UHF band also shows the feasibility of impedance matching to tile RFID tag chip.

  • PDF

Conductive Fabric UHF RFID Tag Antenna Design (전도성 천을 이용한 UHF RFID 태그 안테나 설계)

  • Kang, Juwon;Chung, Youchung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.209-214
    • /
    • 2019
  • This paper presents the design of a 920 MHz ultra-high frequency(UHF) band radio frequency identification(RFID) conductive fabric tag antenna. The resistance values of four different conductive fabrics are measured, and the conductivities of the fabrics are calculated. The fabric with the best conductivity is selected, and the best conductivity of the fabric is used to simulate the fabric tag antenna design. The fabric UHF RFID tag antenna with a T-Matching structure and name-tag size of $80{\times}40mm$ is simulated and designed. The simulated and measured results are compared, and a laundry test is performed. The reading range of the fabric tag antenna is about 2 m. This fabric tag can be easily applied to an entrance control system as it can be attached to other fabrics and cloths.

V/UHF-Band Broadband 2-Way Power Divider (V/UHF-대역 광대역 2분기 전력 분배기)

  • Park, Yeo-Il;Ko, Jin-Hyun;Park, Young-Joo;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4 s.119
    • /
    • pp.416-422
    • /
    • 2007
  • In this paper, a broadband 2-way power divider which can be used from 20 MHz to 500 MHz in the V/UHF band is designed using transmission-line transformer and ferrite toroid. A 2:1 impedance transformer instead of the conventional 4:1 impedance transformer is realized and this 2:1 transformer is connected with the conventional bridge-type 2-way divider to form a 2-way power divider. Insertion loss of about 3.5 dB, isolation of less than -10 dB, and return loss of less than -10 dB in most band of interest are measured.

Design of a V/UHF-Band Broadband 4-Way Power Divider (V/UHF-대역 광대역 4분기 전력 분배기 설계)

  • Park, Yeo-Il;Ko, Jin-Hyun;Ha, Jae-Kwon;Park, Young-Joo;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.904-912
    • /
    • 2007
  • In this paper, a broadband 4-way power divider which can be used from 20 MHz to 500 MHz in the V/UHF band is designed using transmission-line transformer and ferrite toroid. A 4:1 impedance transformer is realized and this 4:1 transformer is connected with bridge-type 2-way dividers to form a 4-way rower divider, Insertion loss of about 6.8dB, isolation of less than -20dB, and return loss of less than -15dB in most band of interest are measured.

Design of High Sensitive Broadband Tag Antenna for RFID System in UHF Band (UHF 대역 RFID 시스템용 고감도 광대역 태그 안테나의 설계)

  • Park, Gun-Do;Min, Kyeong-Sik
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.51-56
    • /
    • 2009
  • This paper presents the design of high sensitive/broadband tag antenna for Radio Frequency Identification (RFID) in Ultra High Frequency(UHF) band. A proposed tag antenna size is $60\;mm\;{\times}\;10\;mm\;{\times}\;1\;mm$. The resonant frequency is 910MHz and bandwidth is about 900 MHz at -10 dB below. The measured return loss and directional pattern have been confirmed a good agreement with the calculation results. The read range of proposed tag antenna with chip is observed about 6.5 m and proposed tag antenna has been observed an average 0.5 m for more than read range of the commercial tag antenna.

Design of Cartesian Feedback Loop Linearization Chip for UHF Band (UHF 대역용 Cartesian Feedback Loop 선형화 칩 설계)

  • Kang, Min-Soo;Chong, Young-Jun;Oh, Seung-Hyeub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.5
    • /
    • pp.510-518
    • /
    • 2010
  • In this paper, the designed and implemented results of CFL linearization chip which can be used in mobile radio and TRS terminal of UHF band(380~910 MHz), using $0.6\;{\mu}m$ BiCMOS process based on Si, are shown. As gain control circuits for modifying transmit power are inserted not only in feedback path but also in forward path, the stability of CFL is maintained. And, DC-offset correction function of S/H structure, which is suitable for walkie-talkie PTT operation and is easily implemented, is realized. The performance test results of transmitter show that the regulation of FCC emission mask at PEP 3 W(34.8 dBm) is satisfied when the CQPSK modulated signal is fed and more than 30 dBc improvement of 3rd order IMD is achieved when two-tone signal is inputted.