• Title/Summary/Keyword: UHF Band Protocol

Search Result 16, Processing Time 0.022 seconds

Implementation of UHF Multi-band Multi-protocol u-ID Mobile Reader System (UHF 대역 멀티밴드 멀티프로토콜 ubiquitous-ID 휴대형 리더기 시스템 구현)

  • Ko, Dae-Soo;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.707-713
    • /
    • 2007
  • This paper implements a RFID multi-band multi-protocol reader platform, possible to select one of the UHF bands used in particular for distribution system in RFID, that is, from 860MHz to 960MHz, through programmable configuration. It also enables implemented platform in this paper to recognize many kinds of TAG protocol, such as EPC Class 1 GEN 1, Class 1 Gen2, ISO 18000-6A, B and C.

Design and Implementation of System in Package for a HF/UHF Multi-band RFID Reader (HF/UHF 멀티밴드 RFID 리더의 SiP 설계 및 구현)

  • An, Kwang-Dek;Yi, Kyeong-Il;Kim, Ji-Gon;Cho, Jung-Hyun;Kim, Shi-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.59-65
    • /
    • 2008
  • We have proposed a UHF/HF multi-band RFID reader, and have implemented it into a system in a package(SiP). The proposed SiP RFID reader has been designed to support both for EPCgloabal Class1 Generation2 protocol of UHF band, and 13.56MHz RFID protocols of ISO14443 A/B type, and ISO15693 standards. The operating mode is controlled by embedded RISC core, and the mode can be selected by users. The area of implemented SiP is $40mm{\times}40mm$ with 4 metal layers. The implemented reader SiP operates at single supply voltage of 3.3V. The maximum current consumption is 210mA. The operating distances are 5cm for 13.56MHz modes, and 20cm for UHF mode.

Implementation of Digital CODEC for RFID Dual-band Reader system (RFID Dual-band 리더 시스템의 디지털 코덱 설계)

  • Sim, Jae-Hee;Lee, Yong-Joo;Lee, Yong-Surk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.1015-1022
    • /
    • 2007
  • In this paper, dual-band digital codec for UHF(Ultra High Frequency) and MW(Micro Wave) is proposed for an RFID reader system. Most RFID systems have been supported only one protocol. But, There are many protocols of each bandwidth. Especially, UHF bandwidth which is widely used on the globe consists of A,B,C type, and more standards will be established. Recently, Since an interest about mobile RFID system is increasing, the RFID system with more than one protocol will be need. Therefore, this paper suggests a dual-band digital codec with UHF and MW bands for an RFID reader system. Standards used in this system are 18000-6C and 18000-4 standards. The digital codec is synthesize by the Quartus II compiler. Target device is EPC20Q240C8 which is family of CycloneII. Main Clock is 19.2MHz and elements of FPGA which is used for the system is 18,752.

Block Cipher Circuit and Protocol for RFID in UHF Band (UHF 대역 RFID 시스템을 위한 블록 암호 회로와 프로토콜)

  • Lee, Sang-Jin;Park, Kyung-Chang;Kim, Han-Byeo-Ri;Kim, Seung-Youl;You, Young-Gap
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.74-79
    • /
    • 2009
  • This paper proposes a hardware structure and associated finite state machine designs sharing key scheduling circuitry to enhance the performance of the block cypher algorithm, HIGHT. It also introduces an efficient protocol applicable to RFID systems comprising the HIGHT block cipher algorithm. The new HIGHT structure occupies an area size small enough to accommodate tag applications. The structure yields twice higher performance them conventional HIGHT algorithms. The proposed protocol overcomes the security vulnerability of RFID tags and thereby strengthens the security of personal information.

UHF RFID Hand-Held Transceiver System with Multi-protocol and Multi-Standard supplements (Multi-Protocol/Multi-Standard 지원 UHF RFID 휴대용 리더 시스템)

  • Park, Kyong-Tae;Roh, Hyoung-Hwan;Park, Jun-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.147-150
    • /
    • 2007
  • This paper presents an advanced RFID reader system implementing multi-protocols and multi-standards at 900MHz. In accordance with the strict regulations specified by ISO 18000-6 B-Type and EPC Global Gen 2, we have designed corresponding systemic factors which meet the domestic radio frequency utilizing bands of 910-914MHz. In addition, we develop numerous crucial factors of system compatibility options including SSB (Single-Side Band) and DSB (Double-Side Band) specifications, also OOK (On-Off Keying), ASK (Amplitude Shift Keying) and PR-ASK (Phase Reversed-Amplitude Shift Keying) modulation formula. Remarkable technical features of system in this paper can be the direct conversion routines using I/Q Modulation/Demodulation respectively, and Full-Duplex formulation operating at identical frequency bands.

  • PDF

Improvement of EPC Class-0 Anticollision Algorithm for RFID Air-Interface Protocol (무선인식 프로토콜에서의 EPC Class-0 충돌방지 알고리즘 개선)

  • Lim, Jung-Hyun;Jwa, Jeong-Woo;Yang, Doo-Yeong
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.3
    • /
    • pp.18-24
    • /
    • 2008
  • This paper analyzed Air Interface of EPCglobal's Class-0 that is UHF band protocol among radio environment protocol standard that is used to RFID system. And embodied prescribed anticollision algorithm in protocol. Also, the improved anticollision algorithm for the Class-0 protocol is proposed and performances of anticollision algorithm are compared. Result that compare performance of standard algorithm through simulation with improved algorithm, improved Class-0 algorithm when is tag number 100, reduced 8%, and when is tag number 1000, 12.2%. According as tag number increases, total realization time of improved algorithm decreased more gradually better than prescribed algorithm. Therefore, the improved anticollision algorithm proposed in this paper is advanced method improving the performance of tag recognition in the RFID system and Ubiquitous sensor network.

Design Implementation of Lightweight and High Speed Security Protocol Suitable for UHF Passive RFID Systems (UHF 수동형 RFID 시스템에 적합한 경량 고속의 보안 프로토콜 설계 및 구현)

  • Kang, You-Sung;Choi, Yong-Je;Choi, Doo-Ho;Lee, Sang-Yeoun;Lee, Heyung-Sup
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.4
    • /
    • pp.117-134
    • /
    • 2010
  • A passive RFID tag which received attention as a future technology for automatic and quick identification faces some difficulties about security problems such as tag authentication, reader authentication, data protection, and untraceability in addition to cost and reliable identification. A representative passive RFID technology is the ISO/IEC 18000-6 Type C which is an international standard for 900 MHz UHF-band. This standard has some difficulties in applying to the security services such as originality verification, tag's internal information protection, and untraceability, because it does not provide high-level security solution. In this paper, we summarize security requirements of ISO/IEC ITC 1/SC 31 international standardization group, propose security protocols suitable for the UHF-band passive RFID system using a crypto engine, and analyze its security strength. In addition, we verify that it is possible to implement a tag conforming with the proposed security protocols by presenting concrete command/response pairs and cryptographic method.

Improvement of EPC Class-1 Anticollision Algorithm for RFID Air-Interface Protocol (무선인식 프로토콜의 EPC 클래스-1 충돌방지 알고리즘 개선)

  • Kang, Bong-Soo;Lim, Jung-Hyun;Kim, Heung-Soo;Yang, Doo-Yeong
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.4
    • /
    • pp.10-19
    • /
    • 2007
  • In this paper, Class-1 Air-interface protocols of EPCglobal applied to RFID system in UHF band are analyzed, and the standard anticollision algorithms are realized. Also, the improved anticollision algorithms of the Class-1 Generation-1 and Generation-2 protocol are proposed and the performances of anticollision algorithms are compared. As the results, reduction ratio of total tag recognition time of the improved Generation-1 algorithm is 54.5% for 100 tags and 63.4% for 1000 tags with respect to standard algorithm, respectively. And the reduction ratio of the improved Generation-2 algorithm is 7.9% for 100 tags and 11.7% for 1000 tags. Total recognition times of the improved algorithms are shorter than those of standard algorithms according to increasing the number of tag. Therefore, the improved anticollision algorithm proposed in this paper is the advanced method improving the performance of tag recognition in the RFID system.

Design of Regulated Low Phase Noise Colpitts VCO for UHF Band Mobile RFID System (UHF 대역 모바일 RFID 시스템에 적합한 저잡음 콜피츠 VCO 설계)

  • Roh, Hyoung-Hwan;Park, Kyong-Tae;Park, Jun-Seok;Cho, Hong-Gu;Kim, Hyoung-Jun;Kim, Yong-Woon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.964-969
    • /
    • 2007
  • A regulated low phase noise differential colpitts VCO(Voltage Controlled Oscillator) for mobile RFID system is presented. The differential colpitts VCO meets the dense reader environment specifications. The VCO use a $0.35{\mu}m$ technology and achieves tuning range $1.55{sim}2.053 GHz$. Measuring 910 MHz frequency divider output, phase noise performance is -106 dBcMz and -135dBc/Hz at 40 kHz and 1MHz offset, respectively. 5-bit digital coarse-tuning and accumulation type MOS varactors allow for 28.2% tuning range, which is required to cover the LO frequency range of a UHF Mobile RFID system, Optimum design techniques ensure low VCO gain(<45 MHz/V) for good interoperability with the frequency synthesizer. To the author' knowledge, this differential colpitts VCO achieves a figure of merit(FOM) of 1.93dB at 2-GHz band.

Performance Improvement of Anti-collision Algorithm for RFID Protocol and Algorithm Comparison (RFID 프로토콜의 충돌방지 알고리즘의 성능 개선과 알고리즘 비교)

  • Lim, Jung-Hyun;Kim, Ji-Yoon;Jwa, Jeong-Woo;Yang, Doo-Yeong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.6
    • /
    • pp.51-61
    • /
    • 2007
  • In this paper, Air-interface protocols of ISO 18000-6 Types and EPCglobal Classes applied to RFID system in UHF band are analyzed, and those anticollision algorithms are realized. Also, the each algorithm which improves the performance of standard protocol is proposed, and the performance is compared when clock period of link timing is a identical condition on $12.5{\mu}s$. As the result, when 500 tags exist simultaneously inside reader interrogation zone, the tag recognition performance of a standard protocol is better in preceding order of Class-1 Generation-1, Type B, Type A, Class-0 and Class-1 Generation-2. And also the performance of improved protocol is better in ascending order of Type B, Type A, Class-1 Generation-1, Class-0 and Class-1 Generation-2. Therefore, performance of tag recognition remarkably depends on the regulated clock period in the protocol and link timing between a reader and a tag.