• Title/Summary/Keyword: UGT1A1 genotype

Search Result 5, Processing Time 0.02 seconds

The UGT1A9*22 genotype identifies a high-risk group for irinotecan toxicity among gastric cancer patients

  • Lee, Choong-kun;Chon, Hong Jae;Kwon, Woo Sun;Ban, Hyo-Jeong;Kim, Sang Cheol;Kim, Hyunwook;Jeung, Hei-Cheul;Chung, Jimyung;Rha, Sun Young
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.29.1-29.12
    • /
    • 2022
  • Several studies have shown associations between irinotecan toxicity and UGT1A genetic variations in colorectal and lung cancer, but only limited data are available for gastric cancer patients. We evaluated the frequencies of UGT1A polymorphisms and their relationship with clinicopathologic parameters in 382 Korean gastric cancer patients. Polymorphisms of UGT1A1*6, UGT1A1*27, UGT1A1*28, UGT1A1*60, UGT1A7*2, UGT1A7*3, and UGT1A9*22 were genotyped by direct sequencing. In 98 patients treated with irinotecan-containing regimens, toxicity and response were compared according to the genotype. The UGT1A1*6 and UGT1A9*22 genotypes showed a higher prevalence in Korean gastric cancer patients, while the prevalence of the UG1A1*28 polymorphism was lower than in normal Koreans, as has been found in other studies of Asian populations. The incidence of severe diarrhea after irinotecan-containing treatment was more common in patients with the UGT1A1*6, UGT1A7*3 and UGT1A9*22 polymorphisms than in controls. The presence of the UGT1A1*6 allele also showed a significant association with grade III-IV neutropenia. Upon haplotype and diplotype analyses, almost every patient bearing the UGT1A1*6 or UGT1A7*3 variant also had the UGT1A9*22 polymorphism, and all severe manifestations of UGT1A polymorphism-associated toxicity were related to the UGT1A9*22 polymorphism. By genotyping UGT1A9*22 polymorphisms, we could identify high-risk gastric cancer patients receiving irinotecan-containing chemotherapy, who would experience severe toxicity. When treating high-risk patients with the UGT1A9*22 polymorphism, clinicians should closely monitor them for signs of toxicity such as severe diarrhea or neutropenia.

Clinical Observations on Associations Between the UGT1A1 Genotype and Severe Toxicity of Irinotecan

  • Lu, Yan-Yan;Huang, Xin-En;Wu, Xue-Yan;Cao, Jie;Liu, Jin;Wang, Lin;Xiang, Jin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3335-3341
    • /
    • 2014
  • Background: Severe toxicity is commonly observed in cancer patients receiving irinotecan (CPT-11) UDPglucuronosyltransferase1A1 (UGT1A1) catalyzes the glucuronidation of the active metabolite SN-38 but the relationship between UGT1A1 and severe toxicity remains unclear. Our study aimed to assess this point to guide clinical use of CPT-11. Materials and Methods: 89 cancer patients with advanced disease received CPT-11-based chemotherapy for at least two cycles. Toxicity, including GI and hematologic toxicity was recorded in detail and UGT1A1 variants were genotyped. Regression analysis was used to analyse relationships between these variables and tumor response. Results: The prevalence of grade III-IV diarrhea was 10.1%, this being more common in patients with the TA 6/7 genotype (5 of 22 patients, 22.7%) (p<0.05). The prevalence of grade III-IV neutropenia was 13.4%and also highest in patients with the TA 6/7 genotype (4 of 22 patients; 18.2%) but without significance (p>0.05). The retreatment total bilirubin levels were significantly higher in TA6/7 patients (mean, $12.75{\mu}mol/L$) with compared to TA6/6 (mean, $9.92{\mu}mol/L$) with p<0.05. Conclusions: Our study support the conclusion that patients with a $UGT1A1^*28$ allele (s) will suffer an increased risk of severe irinotecan-induced diarrhea, whether with mid-or low-dosage. However, the $UGT1A1^*28$ allele (s) did not increase severe neutropenia. Higher serum total bilirubin is an indication that patients UGT1A1 genotype is not wild-type, with significance for clinic usage of CPT-11.

The Exposure Status and Biomarkers of Polycyclic Aromatic Hydrocarbons in Shipyard Workers

  • Koh, Sang-Baek;Park, Jun-Ho;Yun, Ju-Song;Lee, Kang-Myoung;Cha, Bong-Suk;Chang, Sei-Jin;Kim, Cheong-Sik;Kim, Heon;Chang, Soung-Hoon
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.134-140
    • /
    • 2006
  • Because shipyard workers are involved with various manufacturing process in shipyard industry, and they are exposed to many kinds of hazardous materials. Especially, painting workers were exposed polycyclic aromatic hydrocarbons (PAH). This study was conducted to assess the exposure status of PAH based on job-exposure matrix. We investigated the effect of genetic polymorphism of xenobiotic metabolism enzymes involved in PAH metabolism on levels of urinary metabolite. A total of 93 shipbuilding workers were recruited in this study. Questionnaire variables were age, sex, use of personal protective equipment, smoking, drinking, and work duration. The urinary metabolite was collected in the afternoon and corrected by urinary creatinine concentration. The genotypes of CYP1A1, CYP2E1, GSTM1, GSTT1 and UGT1A6 were investigated by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods with DNA extracted from venous blood. Urinary 1-OHP levels were significantly higher in direct exposured group (spray and touch-up) than indirect exposed group. Urinary 1-OHP, concentration of the high exposure with wild type of UGT1A6 was significantlyhigher than that of the high exposure with other UGT1A6 genotype. In multiple regression analysis of urinary 1-OHP, the regression coefficient of job grade was statistically significant (p<0.05) and UGT1A6 was not significant but a trend (p<0.1). The grade of exposure affected urinary PAH concentration was statistically significant. But genetic polymorphism of xenobiotics metabolism enzymes was not statistically significant. Further investigation of genetic polymorphism with large sample size is needed.

Variability in Drug Interaction According to Genetic Polymorphisms in Drug Metabolizing Enzymes

  • Jang, In-Jin;Yu, Kyung-Sang;Cho, Joo-Youn;Chung, Jae-Yong;Kim, Jung-Ryul;Lim, Hyeong-Seok;Shin, Sang-Goo
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.1
    • /
    • pp.15-18
    • /
    • 2004
  • There are significant differences in the extent of drug interactions between subjects. The influence of the genetic make up of drug metabolizing enzyme activities (CYP3A5, CYP2C19 and UDP-glucuronosyl transferase) on the pharmacokinetic drug interaction potential were studied in vivo. Nineteen healthy volunteers were grouped with regard to the $CYP3A5^{*}3$ allele, into homozygous wild-type (CYP3A5^{*}1/1^{*}1$, n=6), heterozygous $(CYP3A5^{*}1/^{*}3$, n=6), and homozygous variant-type $(CYP3A5^{*}3/^{*}3$, n=7) subject groups. The pharmacokinetic profile of intravenous midazolam was characterized before and after itraconazole administration (200 mg once daily for 4 days), and also following rifampin pretreatment (600 mg once daily for 10 days), with a washout period of 2 weeks in between. For omeprazole and moclobemide pharmacokinetic interaction study 16 healthy volunteers were recruited. The volunteer group comprised 8 extensive metabolizers and 8 poor metabolizers of CYP2C19, which was confirmed by genotyping. Subjects were randomly allocated into two sequence groups, and a single-blind, placebo-controlled, two-period crossover study was performed. In study I, a placebo was orally administered for 7 days. On the eighth morning, 300 mg of moclobemide and 40 mg of placebo were coadministered with 200 mL of water, and a pharmacokinetic study was performed. During study n, 40 mg of omeprazole was given each morning instead of placebo, and pharmacokinetic studies were performed on the first and eighth day with 300 mg of moclobemide coadministration. In the UGT study pharmacokinetics and dynamics of 2 mg intravenous lorazepam were evaluated before and after rifampin pretreatment (600 mg once daily for 10 days), with a washout period of 2 weeks in between. The subjective and objective pharmacodynamic tests were done before and 1, 2, 4, 6, 8, and 12 hrs after lorazepam administration. The pharmacokinetic profiles of midazolam and of its hydroxy metabolites did not show differences between the genotype groups under basal and induced metabolic conditions. However, during the inhibited metabolic state, the $CYP3A5^{*}3/^{*}3$ group showed a greater decrease in systemic clearance than the $CYP3A5^{*}1/^{*}1$ group $(8.5\pm3.8$ L/h/70 kg vs. $13.5\pm2.7$ L/h/70 kg, P=0.027). The 1'-hydroxymidazolam to midazolam AUC ratio was also significantly lower in the $CYP3A5^{*}3/^{*}3$,/TEX> group $(0.58\pm0.35,$ vs. $1.09\pm0.37$ for the homozygous wild-type group, P=0.026). The inhibition of moclo-bemide metabolism was significant in extensive metabolizers even after a single dose of omeprazole. After daily administration of omeprazole for 1 week, the pharmacokinetic parameters of moclobemide and its metabolites in extensive metabolizers changed to values similar to those in poor metabolizers. In poor meta-bolizers, no remarkable changes in the pharmacokinetic parameters were observed. The area under the time-effect curves of visual analog scale(VAS), choice reaction time, and continuous line tracking test results of lorazepam was reduced by 20%, 7%, 23% respectively in induced state, and in spite of large interindividual variablity, significant statistical difference was shown in VAS(repeated measures ANOVA, p=0.0027).

  • PDF

Variability in Drug Interaction According to Genetic Polymorph isms in Drug Metabolizing Enzymes

  • Jang, In-Jin;Yu, Kyung-Sang;Cho, Joo-Youn;Chung, Jae-Yong;Kim, Jung-Ryul;Lim, Hyeong-Seok;Shin, Sang-Goo
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.4
    • /
    • pp.131-134
    • /
    • 2003
  • There are significant differences in the extent of drug interactions between subjects. The influence of the genetic make up of drug metabolizing enzyme activities (CYP3A5, CYP2C19 and UDP-glucuronosyl transferase) on the pharmacokinetic drug interaction potential were studied in vivo. Nineteen healthy volunteers were grouped with regard to the $CYP3A5^{*}3$ allele, into homozygous wild-type (CYP3A5^{*}1/1^{*}1$, n=6), heterozygous $(CYP3A5^{*}1/^{*}3$, n=6), and homozygous variant-type $(CYP3A5^{*}3/^{*}3$, n=7) subject groups. The pharmacokinetic profile of intravenous midazolam was characterized before and after itraconazole administration (200 mg once daily for 4 days), and also following rifampin pretreatment (600 mg once daily for 10 days), with a washout period of 2 weeks in between. For omeprazole and moclobemide pharmacokinetic interaction study 16 healthy volunteers were recruited. The volunteer group comprised 8 extensive metabolizers and 8 poor metabolizers of CYP2C19, which was confirmed by genotyping. Subjects were randomly allocated into two sequence groups, and a single-blind, placebo-controlled, two-period crossover study was performed. In study I, a placebo was orally administered for 7 days. On the eighth morning, 300 mg of moclobemide and 40 mg of placebo were coadministered with 200 mL of water, and a pharmacokinetic study was performed. During study n, 40 mg of omeprazole was given each morning instead of placebo, and pharmacokinetic studies were performed on the first and eighth day with 300 mg of moclobemide coadministration. In the UGT study pharmacokinetics and dynamics of 2 mg intravenous lorazepam were evaluated before and after rifampin pretreatment (600 mg once daily for 10 days), with a washout period of 2 weeks in between. The subjective and objective pharmacodynamic tests were done before and 1, 2, 4, 6, 8, and 12 hrs after lorazepam administration. The pharmacokinetic profiles of midazolam and of its hydroxy metabolites did not show differences between the genotype groups under basal and induced metabolic conditions. However, during the inhibited metabolic state, the $CYP3A5^{*}3/^{*}3$ group showed a greater decrease in systemic clearance than the $CYP3A5^{*}1/^{*}1$ group $(8.5\pm3.8$ L/h/70 kg vs. $13.5\pm2.7$ L/h/70 kg, P=0.027). The 1'-hydroxymidazolam to midazolam AUC ratio was also significantly lower in the $CYP3A5^{*}3/^{*}3$,/TEX> group $(0.58\pm0.35,$ vs. $1.09\pm0.37$ for the homozygous wild-type group, P=0.026). The inhibition of moclo-bemide metabolism was significant in extensive metabolizers even after a single dose of omeprazole. After daily administration of omeprazole for 1 week, the pharmacokinetic parameters of moclobemide and its metabolites in extensive metabolizers changed to values similar to those in poor metabolizers. In poor meta-bolizers, no remarkable changes in the pharmacokinetic parameters were observed. The area under the time-effect curves of visual analog scale(VAS), choice reaction time, and continuous line tracking test results of lorazepam was reduced by 20%, 7%, 23% respectively in induced state, and in spite of large interindividual variablity, significant statistical difference was shown in VAS(repeated measures ANOVA, p=0.0027).

  • PDF