Browse > Article
http://dx.doi.org/10.7314/APJCP.2014.15.7.3335

Clinical Observations on Associations Between the UGT1A1 Genotype and Severe Toxicity of Irinotecan  

Lu, Yan-Yan (Department of Chemotherapy, the Affiliated Jiangsu Cancer Hospital of Nanjing Medical University & Jingsu Institute of Cancer Research)
Huang, Xin-En (Department of Chemotherapy, the Affiliated Jiangsu Cancer Hospital of Nanjing Medical University & Jingsu Institute of Cancer Research)
Wu, Xue-Yan (Department of Chemotherapy, the Affiliated Jiangsu Cancer Hospital of Nanjing Medical University & Jingsu Institute of Cancer Research)
Cao, Jie (Department of Chemotherapy, the Affiliated Jiangsu Cancer Hospital of Nanjing Medical University & Jingsu Institute of Cancer Research)
Liu, Jin (Department of Chemotherapy, the Affiliated Jiangsu Cancer Hospital of Nanjing Medical University & Jingsu Institute of Cancer Research)
Wang, Lin (Department of Chemotherapy, the Affiliated Jiangsu Cancer Hospital of Nanjing Medical University & Jingsu Institute of Cancer Research)
Xiang, Jin (Department of Research, the Affiliated Jiangsu Cancer Hospital of Nanjing Medical University & Jingsu Institute of Cancer Research)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.15, no.7, 2014 , pp. 3335-3341 More about this Journal
Abstract
Background: Severe toxicity is commonly observed in cancer patients receiving irinotecan (CPT-11) UDPglucuronosyltransferase1A1 (UGT1A1) catalyzes the glucuronidation of the active metabolite SN-38 but the relationship between UGT1A1 and severe toxicity remains unclear. Our study aimed to assess this point to guide clinical use of CPT-11. Materials and Methods: 89 cancer patients with advanced disease received CPT-11-based chemotherapy for at least two cycles. Toxicity, including GI and hematologic toxicity was recorded in detail and UGT1A1 variants were genotyped. Regression analysis was used to analyse relationships between these variables and tumor response. Results: The prevalence of grade III-IV diarrhea was 10.1%, this being more common in patients with the TA 6/7 genotype (5 of 22 patients, 22.7%) (p<0.05). The prevalence of grade III-IV neutropenia was 13.4%and also highest in patients with the TA 6/7 genotype (4 of 22 patients; 18.2%) but without significance (p>0.05). The retreatment total bilirubin levels were significantly higher in TA6/7 patients (mean, $12.75{\mu}mol/L$) with compared to TA6/6 (mean, $9.92{\mu}mol/L$) with p<0.05. Conclusions: Our study support the conclusion that patients with a $UGT1A1^*28$ allele (s) will suffer an increased risk of severe irinotecan-induced diarrhea, whether with mid-or low-dosage. However, the $UGT1A1^*28$ allele (s) did not increase severe neutropenia. Higher serum total bilirubin is an indication that patients UGT1A1 genotype is not wild-type, with significance for clinic usage of CPT-11.
Keywords
CPT-11; UGT1A1 genotype; toxicity;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Toffoli G, Cecchin E, Corona G, et al (2006). The role of UGT1A1*28 polymorphism in the pharmacodynamics and pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. J Clin Oncol, 24, 3061-8.   DOI   ScienceOn
2 Uygun K, Bilici A, Kaya S, et al (2013). XELIRI plus bevacizumab compared with FOLFIRI plus bevacizumab as first-line setting in patients with metastatic colorectal cancer: experiences at two-institutions. Asian Pac J Cancer Prev, 14, 2283-8.   과학기술학회마을   DOI   ScienceOn
3 Vanhoefer U, Harstrick A, Achterrath W, et al (2001). Irinotecan in the treatment of colorectal cancer: clinical overview. J Clin Oncol, 19, 1501-18.   DOI
4 Wei GL, Huang XE, Huo JG, et al (2013). Phase II study on pemetrexed-based chemotherapy in treating patients with metastatic gastric cancer not responding to prior palliative chemotherapy. Asian Pac J Cancer Prev, 14, 2703-6.   과학기술학회마을   DOI   ScienceOn
5 Wu XY, Huang XE, You SX, et al (2013). Phase II study of pemetrexed as second or third line combined chemotherapy in patients with colorectal cancer. Asian Pac J Cancer Prev, 14, 2019-22.   과학기술학회마을   DOI   ScienceOn
6 Zhang E, Cao W, Cheng C, et al (2014). A systemic analysis of s-1 regimens for treatment of patients with colon cancer. Asian Pac J Cancer Prev, 15, 2191-4.   DOI   ScienceOn
7 Rothenberg ML, Kuhn JG, Schaaf LJ, et al (2001). Phase I dose-finding and pharmacokinetic trial of irinotecan (CPT-11) administered every two weeks. Ann Oncol, 12, 1631-41.   DOI   ScienceOn
8 Rothenberg ML, Kuhn JG, Burris HA, et al (1993). Phase I and pharmacokinetic trial of weekly CPT-11. J Clin Oncol, 11, 2194-204.   DOI
9 Reilly JJ, Workman P, et al (1993). Normalisation of anti-cancer drug dosage using body weight and surface area: is it worthwhile? A review of theoretical and practical considerations. Cancer Chemother Pharmacol, 32, 411-8.   DOI   ScienceOn
10 Raynal C, Pascussi JM, Leguelinel G, et al (2010). Pregnane X Receptor (PXR) expression in colorectal cancer cells restricts irinotecan chemosensitivity through enhanced SN-38 glucuronidation. Mol Cancer, 9, 46.
11 Saltz LB, Cox JV, Blanke C, et al (2000). Irinotecan plus fluororail and leucovorin for metastatc colorectal cancer. Irinotecan Study Group. N Engl J Med, 343, 905-14.
12 Takasuna K, Hagiwara T, Hirohashi M, et al (1996). Involvement of beta-glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Res, 56, 3752-7.
13 Ma D (2011). The relationship between UGT1A1*28 genotypes and toxicity and effect of CPT-11 in Chinese. SUN Yat-sen Univ (Med Sci), 32, 495-9.
14 Marcuello E, et al. (2004). UGT1A1 gene variations and irinotecan treatment in patients with metastatic colorectal cancer. Br J Cancer, 91 (4):678-82.   DOI
15 Bosma PJ, Chowdhury JR, Bakker C, et al (1995). The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert's syndrome. N Engl J Med, 333, 1171-5.   DOI   ScienceOn
16 Bozkurt O, Karaca H, Ciltas A, et al (2014). Efficacy and Safety of Raltitrexed Combinations with Uracil- Tegafur or Mitomycin C as Salvage Treatment in Advanced Colorectal Cancer Patients: A Multicenter Study of Anatolian Society of Medical Oncology (ASMO). Asian Pac J Cancer Prev. 15, 1845-9.   DOI   ScienceOn
17 Carlini LE, Meropol NJ, Bever J (2005). UGT1A7 and UGT1A9 polymorphisms predict response and toxicity in colorectal cancer patients treated with capecitabine/irinotecan. Clin Cancer Res, 11, 1226-36.
18 Rouits E, Boisdron-Celle M, Dumont A, et al (2004). Relevance of different UGT1A1 polymorphisms in irinotecan-induced toxicity: a molecular and clinical study of 75 patients. Clin Cancer Res, 10, 5151-9.   DOI   ScienceOn
19 Rouits E, Charasson V, Petain A, et al (2008). Pharmacokinetic and pharmacogenetic determinants of the activity and toxicity of irinotecan in metastatic colorectal cancer patients. Br J Cancer, 99, 1239-45.   DOI   ScienceOn
20 Rougier P, Van Cutsem E, Bajetta E, et al (1998). Randomised trial of irinotecan versus fluorouracil by continuous infusion after fluorouracil failure in patients with metastatic colorectal cancer. Lancet, 352, 1407-12.   DOI   ScienceOn
21 Marcuello E1, Altes A, Menoyo A, et al (2004). UGT1A1 gene variations and irinotecan treatment in patients with metastatic colorectal cancer. Br J Cancer, 91, 678-82.   DOI
22 Masuda N (1999). Randomized trial comparing cisplatin (CDDP) and irinotecan (CPT-11) versus CDDP and vindesine (VDS) versus CPT-11 alone in advanced non-small cell lung cancer (NSCLC), a multicenter phase III study. Proc Am Soc Clin, 18, 459.
23 Kudoh S, Fujiwara Y, Takada Y, et al (1998). Phase II study of irinotecan combined with cisplatin in patients with previously untreated small-cell lung cancer. West Japan Lung Cancer Group. J Clin Oncol, 16, 1068-74.   DOI
24 Kawato Y, Aonuma M, Hirota Y, Kuga H, Sato K (1991). Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res, 51, 4187-91.
25 Negoro S, Fukuoka M, Masuda N, et al (1991). Phase I study of weekly intravenous infusions of CPT-11, a new derivative of camptothecin, in the treatment of advanced non-small-cell lung cancer. J Natl Cancer Inst, 83, 1164-8.   DOI
26 Araki K (2006), Pharmacogenetic impact of polymorphisms in the coding region of the UGT1A1 gene on SN-38 glucuronidation in Japanese patients with cancer. Cancer Sci, 97, 1255-9.   DOI   ScienceOn
27 Ando Y (2000). Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res, 60, 6921-6.
28 Beutler E, Gelbart T, Demina A (1998), Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc Natl Aca Sci USA, 95, 8170-4.   DOI   ScienceOn
29 Iyer L, King CD, Whitington PF, et al (1998). Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest, 101, 847-54.   DOI   ScienceOn
30 Gupta E, Mick R, Ramirez J, et al (1997), Pharmacokinetic and pharmacodynamic evaluation of the topoisomerase inhibitor irinotecan in cancer patients. J Clin Oncol, 15, 1502-10.   DOI
31 Hoskins JM, Goldberg RM, Qu P, Ibrahim JG, McLeod HL (2007). UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J Natl Cancer Inst, 99, 1290-5.   DOI   ScienceOn
32 Hu ZY, Yu Q, Zhao YS et al (2010). Dose-dependent association between UGT1A1*28 polymorphism and irinotecan-induced diarrhoea: a meta-analysis. Eur J Cancer, 46, 1856-65.   DOI   ScienceOn
33 Iyer L, Das S, Janisch L, et al (2002), UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics, 2, 43-7.   DOI   ScienceOn
34 Innocenti F, Undevia SD, Iyer L, et al (2004), Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol, 22, 1382-8.   DOI   ScienceOn
35 Ichikawa W, Araki K, Fujita K, et al (2008). UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J Natl Cancer Inst, 100, 224-5.   DOI   ScienceOn
36 Kudoh S, Fukuoka M, Masuda N et al (1995). Relationship between the pharmacokinetics of irinotecan and diarrhea during combination chemotherapy with cisplatin. Jpn J Cancer Res, 86, 406-13.   DOI
37 Cunningham D, Pyrhonen S, James RD, et al (1998). Randomised trial of irinotecan plus supportive care versus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer. Lancet, 352, 1413-8.   DOI   ScienceOn
38 EGAPP Working Group (2009). Recommendations from the EGAPP Working Group: can UGT1A1 genotyping reduce morbidity and mortality in patients with metastatic colorectal cancer treated with irinotecan? Genet Med, 11, 15-20.   DOI   ScienceOn
39 Fukuoka M, Niitani H, Suzuki A, et al (1992). A phase II study of CPT-11, a new derivative of camptothecin, for previously untreated non-small-cell lung cancer. J Clin Oncol, 10, 16-20.   DOI
40 Fuchs CS, Moore MR, Harker G, et al (2003). Phase III comparison of two irinotecan dosing regimens in second-line therapy of metastatic colorectal cancer. J Clin Oncol, 21, 807-14.   DOI   ScienceOn
41 Gupta E, Lestingi TM, Mick R, et al (1994). Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res, 54, 3723-5.
42 Soepenberg O, Dumez H, Verweij J, et al (2005). Phase I pharmacokinetic, food effect, and pharmacogenetic study of oral irinotecan given as semisolid matrix capsules in patients with solid tumors. Clin Cancer Res, 11, 1504-11.   DOI   ScienceOn