• 제목/요약/키워드: UAV technology

검색결과 561건 처리시간 0.031초

소형 태양광 무인 항공기의 비행실험에 관한 연구 (Study on Flight Test of Small Solar-Powered UAV)

  • 안일영;배재성;박상혁
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.313-318
    • /
    • 2012
  • In the present study, the preliminary study on a small solar-powered RC airplane are performed for the development of a long-endurance solar-powered UAV. Solar energy enables the solar-powered UAV to fly longer or eternally. The solar-powered UAV transfers the solar energy to electric energy and this energy is used for the flight and the battery charge. To increase the flying time, the efficiency of the solar-cell power system must be increased and the required power for flight must be minimized. Hence, the system integration including solar cell and controller, the power system design, and the aerodynamic and structural designs of the UAV is very important. The present study have performed the design, manufacture, and flight test of the small solar-powered UAV for the preliminary study of the long-endurance solar-powered UAV. From this study, the system integration technology of the solar-powered UAV design is established, and the possibility and the issue points for the development of the long-endurance solar-powered UAV are discussed.

  • PDF

Modeling and Autopilot Design of Blended Wing-Body UAV

  • Min, Byoung-Mun;Shin, Sung-Sik;Shim, Hyun-Chul;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권1호
    • /
    • pp.121-128
    • /
    • 2008
  • This paper describes the modeling and autopilot design procedure of a Blended Wing-Body(BWB) UAV. The BWB UAV is a tailless design that integrates the wing and the fuselage. This configuration shows some aerodynamic advantages of lower wetted area to volume ratio and lower interference drag as compared to conventional type UAV. Also, BWB UAV may be increase payload capacity and flight range. However, despite of these benefits, this type of UAV presents several problems related to flying qualities, stability, and control. In this paper, the detailed modeling procedure of BWB UAV and stability analysis results using the linearized model at trim condition are represented. Finally, we designed the autopilot of BWB UAV based on a simple control allocation scheme and evaluated its performance through nonlinear simulation.

휴머노이드 로봇을 이용한 무인항공기 개발 (Development of a UAV Using a Humanoid Robot)

  • 송한준;이다솔;심현철
    • 제어로봇시스템학회논문지
    • /
    • 제20권11호
    • /
    • pp.1112-1117
    • /
    • 2014
  • Unmanned aerial vehicles (UAVs) are a popular research topic because of a great ripple effect in the future. However, current UAV technologies cannot be applied to manual aerial vehicles without any modification. As an alternative to current UAV technology, humanoid robots are adopted as pilots. If a humanoid robot controls an aerial vehicle autonomously, not only could manual aerial vehicles be utilized as UAVs, but the humanoid robot would also be put into an environment created for humans and conduct some missions suitable for humans. Humanoid robots are also able to handle tools and equipment designed for humans. In order to prove that a humanoid robot can pilot an airplane, an experiment is performed and the results of this experiment are shown in this paper.

Downward Load Prediction and Reduction Strategy for QTP UAV

  • Park, Youngmin;Choi, Jaehoon;Lee, Hakmin;Kim, Cheolwan
    • 항공우주시스템공학회지
    • /
    • 제15권2호
    • /
    • pp.10-15
    • /
    • 2021
  • The propeller wake of tiltrotor-type aircrafts, such as TR-60 and quad tilt propeller (QTP) UAV, in hover substantially impinges the upper surface of the primary wing and generates a downward load. This load is directly proportional to the thrust of the propeller and reduces the available payload. Therefore, wing and nacelle mechanisms should be carefully designed to reduce downward load. This study conducted a numerical analysis of the rotating propeller in hover to predict the downward load of a QTP UAV. An unsteady three-dimensional Navier-Stokes solver was used along with a sliding mesh for the simulation of the rotating propeller. To reduce the downward load, the tilting mechanisms of the partial wing and nacelle were simultaneously introduced and numerically analyzed. Finally, the downward load was predicted by 14% of isolated propeller thrust; further, the downward load could be reduced by adopting the partial wing and nacelle tilting concept.

무인항공기 위치정확도 시험평가 기법 연구 (Feasibility Study on the Methodology of Test and Evaluation for UAV Positioning)

  • 주요한;문경환;강봉석;정재원;손한기;조정현
    • 한국항행학회논문지
    • /
    • 제22권6호
    • /
    • pp.530-536
    • /
    • 2018
  • 최근 무인항공기 드론의 활용범위와 수요가 지속적으로 증가함에 따라 무인항공기와 유인항공기 간 공역을 통합하여 운용하는 연구가 전 세계적으로 활발하게 진행되고 있다. 공역 통합을 위해서는 유인항공기에 준한 기술기준 및 인증 제도 수립이 필수적이며, 이에 따른 시험평가 방안이 제시되어야 한다. 본 논문에서는 향후 무인항공기 항법 시스템에 대한 기술기준이 수립되었을 경우, 기술기준 적합성 검증을 위한 시험방법을 제시하였다. 연구를 위해 무인항공기 임무 프로파일 및 운용환경 분석, 시험항목 도출, 시험방법 수립, 시뮬레이션 및 무인항공기를 통한 실증을 수행하였다. 시험방법으로 정적시험, 트랙이동시험, 경로비행시험이 도출되었으며, 각 시험수행 결과 시험대상 무인항공기의 항법시스템 오차는 전체 비행단계에서 95% 신뢰수준에서 약 1.4m의 위치정확도를 보임을 확인하였다.

Attitude Stabilization of a Quad-Rotor UAV Using a Two-camera Vision System

  • Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권1호
    • /
    • pp.76-84
    • /
    • 2008
  • This paper is mainly concerned with the vision-based attitude stabilization of a quad-rotor UAV. The methods for attitude control rely on computing the roll and pitch angles of the vehicle from a two-camera vision system. One camera is attached to the body-fixed x-axis and the other to the body-fixed y-axis. The attitude computation for the quad-rotor UAV is performed by image processing consisting of Canny edge and Hough line detection. A proportional and integral controller is employed for the attitude hold autopilot. In this paper, the quad-rotor UAV is modeled by 6-DOF nonlinear equations of motion that includes rotor aerodynamics with blade element theory. The performance of the proposed method is evaluated through 3D environmental numerical simulations.

스마트 무인기 개발프로그램의 시스템엔지니어링의 적용 (SE Appication of Smart UAV Development Program)

  • 이정진;김재무;임철호
    • 시스템엔지니어링워크숍
    • /
    • 통권4호
    • /
    • pp.108-112
    • /
    • 2004
  • The Smart UAV Program was motivated by a huge potential market, a various application and future core technologies. The Smart UAV system is defined as the advanced air vehicle with the smart technology such as collision awareness and avoidance, healthy monitering and self-recovering, intelligent active control. Due to the broad interest by government, industry and academia, Smart UAV development center and government steering committee were established. The organization of Smart UAV program consists of domestic/international companies and academia. in this paper, the process and application of system engineering was introduced for Smart UAV development program.

  • PDF

UAV 제어 신호의 자동 검사 방법 (Automatic UAV Control Signal Assessment Method)

  • 곽정훈;박종혁;성연식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 춘계학술발표대회
    • /
    • pp.679-681
    • /
    • 2016
  • 최근에 무인항공기(Unmanned Aerial Vehicle, UAV)를 재난 발생 지역과 같은 넓은 지역을 촬영하기 위해서 사용되고 있다. 촬영 비용을 낮추면서 넓은 지역을 촬영하기 위해서 자율 비행 방법이 필요하다. 예를 들어, 모터프리미티브를 기반으로 제어 신호를 UAV로 전송하여 자율 비행하는 방법이 있다. 하지만, 지상관제소(Ground Control Station, GCS)에서 UAV로 제어 신호를 전송하는 과정에서 제어 신호의 손실이 발생하면 예상한 모터프리미티브를 수행하지 못한다. 이 논문에서는 GCS에서 UAV로 송신된 제어 신호가 실행되고 있는지 검사하는 방법을 제안한다. UAV로 송신된 제어 신호의 실행 여부를 확인함으로써 예상한 모터프리미티브를 제어 신호 손실 없이 수행가능하다.

GNSS Airborne Multipath Error Modeling Under UAV Platform and Operating Environment

  • Kim, Minchan;Kim, Kiwan;Lee, Dong-Kyeong;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권1호
    • /
    • pp.1-7
    • /
    • 2015
  • In the case of an unmanned aerial vehicle (UAV) equipped with a GNSS sensor, a boundary line where the vehicle can actually exist can be calculated using a navigation error model, and safe navigation (e.g., precise landing and collision prevention) can be supported based on this boundary line. Therefore, for the safe operation of UAV, a model for the position error of UAV needs to be established in advance. In this study, the multipath error of a GNSS sensor installed at UAV was modeled through a flight test, and this was analyzed and compared with the error model of an existing manned aircraft. The flight test was conducted based on a scenario in which UAV performs hovering at an altitude of 40 m, and it was found that the multipath error value was well bound by the error model of an existing manned aircraft. This result indicates that the error model of an existing manned aircraft can be used in operation environments similar to the scenario for the flight test. Also, in this study, a scenario for the operation of multiple UAVs was considered, and the correlation between the multipath errors of the UAVs was analyzed. The result of the analysis showed that the correlation between the multipath errors of the UAVs was not large, indicating that the multipath errors of the UAVs cannot be canceled out.

Application of advanced spectral-ratio radon background correction in the UAV-borne gamma-ray spectrometry

  • Jigen Xia;Baolin Song;Yi Gu;Zhiqiang Li;Jie Xu;Liangquan Ge;Qingxian Zhang;Guoqiang Zeng;Qiushi Liu;Xiaofeng Yang
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2927-2934
    • /
    • 2023
  • The influence of the atmospheric radon background on the airborne gamma spectrum can seriously affect researchers' judgement of ground radiation information. However, due to load and endurance, unmanned aerial vehicle (UAV)-borne gamma-ray spectrometry is difficulty installing upward-looking detectors to monitor atmospheric radon background. In this paper, an advanced spectral-ratio method was used to correct the atmospheric radon background for a UAV-borne gamma-ray spectrometry in Inner Mongolia, China. By correcting atmospheric radon background, the ratio of the average count rate of U window in the anomalous radon zone (S5) to that in other survey zone decreased from 1.91 to 1.03, and the average uranium content in S5 decreased from 4.65 mg/kg to 3.37 mg/kg. The results show that the advanced spectral-ratio method efficiently eliminated the influence of the atmospheric radon background on the UAV-borne gamma-ray spectrometry to accurately obtain ground radiation information in uranium exploration. It can also be used for uranium tailings monitoring, and environmental radiation background surveys.