• Title/Summary/Keyword: UAV communication network

Search Result 62, Processing Time 0.032 seconds

Relay Network using UAV: Survey of Physical Layer and Performance Enhancement Issue (무인항공기를 이용한 중계네트워크: 물리계층 동향분석 및 성능향상 이슈)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.901-906
    • /
    • 2019
  • UAV (Unmanned Aerial Vehicle) is widely used in various areas such as civil and military applications including entertainment industries. Among them, UAV based communication system is also one of the important application areas. Relays have been received much attention in communication system due to its benefits of performance enhancement and coverage extension. In this paper, we investigate UAVs as relays especially focusing on physical layer. First, we introduce the research on UAV application for the relays, then the basic performance of relay networks in dual-hop communication system is analyzed by adopting decode-and-forward (DF) relaying protocol. The performance is represented using symbol error rate (SER) and UAV channels are applied by assuming asymmetric environments. Based on the performance analysis, we discuss performance enhancement issues by considering physical layer.

Optimal Placement of UAVs for Self-Organizing Communication Relay: Voronoi Diagram-Based Method (군집 무인기들의 자가구성 통신중계 최적 배치: 보로노이 다이어그램 기반 접근법)

  • Junhee Jang;Hyunwoo Kim;Minsu Park;Seunghwan Choi;Chanyoung Song;Hyeok Yu;Deok-Soo Kim
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2024
  • The utilization of Unmanned Aerial Vehicles (UAVs) is expanding in various industries such as logistics, manufacturing, and transportation. However, to operate a large number of UAVs, it is imperative to first plan a secure and efficient self-configuring communication network for UAVs. In this study, we proposed a method for planning a secure and efficient UAV self-configuring communication network using Voronoi diagrams in the following three steps: 1) generating Voronoi diagrams using obstacles, 2) selecting obstacles to consider for path generation, and 3) planning the optimal path and outputting the path. The real-time feasibility of using the proposed method for planning optimal communication paths for a realistic number of UAVs was experimentally validated.

Unmanned aerial vehicle routing algorithm using vehicular communication systems (차량 통신 시스템 기반 UAV 라우팅 알고리즘)

  • Kim, Ryul;Joo, Yang-Ick
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.622-628
    • /
    • 2016
  • The prosperity of IT technologies and the removal of restrictions regarding Unmanned Aerial Vehicles (UAVs), also known as drones, have driven growth in their popularity. However, without a proper solution to the problem of accident avoidance for UAVs, this popularity increases the potential for collisions between UAVs and between UAV and terrain features. These collisions can occur because UAVs to date have flown using radio control or image recognition based autonomous navigation. Therefore, we propose efficient UAV routing schemes to tackle the collision problem using vehicular communication systems. Performance evaluation by computer simulation shows that the proposed methods effectively reduce the collision probability and improve the routing efficiency of the UAV. Furthermore, the proposed algorithms are compatible and can be directly applied with small overhead to the commercial vehicular communication system implementation.

UAV Network Resource Allocation Algorithm according to the Network Environment and Data Requirement (네트워크 환경 및 데이터 요구사항에 따른 무인기 네트워크 자원할당 알고리즘)

  • Cheon, Hye-Rim;Hwang, Chan-Ho;Lee, Woosin;Yoo, Indeok;Kim, Jae-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.3-11
    • /
    • 2017
  • UAV system has the limitation to allocate enough spectrum bandwidth for the operation of multiple UAVs due to the market expansion. In addition, the communication environment of UAV network varies dynamically due to the UAV's mobility. Thus, to operate the stable UAV system and maximize the transmission data rate, it needs to allocate the resource effectively in the limited bandwidth considering the given network environment. In this paper, we propose the resource allocation algorithm which can maximize the network throughput as well as satisfy the minimum data requirement for the UAV system operation in the given network environment based on TDMA(Time Division Multiple Access). By performance analysis, we show that the proposed algorithm can allocate the resource to satisfy the high network throughput as well as the minimum data requirement in the given network environment.

CNN based dual-channel sound enhancement in the MAV environment (MAV 환경에서의 CNN 기반 듀얼 채널 음향 향상 기법)

  • Kim, Young-Jin;Kim, Eun-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1506-1513
    • /
    • 2019
  • Recently, as the industrial scope of multi-rotor unmanned aerial vehicles(UAV) is greatly expanded, the demands for data collection, processing, and analysis using UAV are also increasing. However, the acoustic data collected by using the UAV is greatly corrupted by the UAV's motor noise and wind noise, which makes it difficult to process and analyze the acoustic data. Therefore, we have studied a method to enhance the target sound from the acoustic signal received through microphones connected to UAV. In this paper, we have extended the densely connected dilated convolutional network, one of the existing single channel acoustic enhancement technique, to consider the inter-channel characteristics of the acoustic signal. As a result, the extended model performed better than the existed model in all evaluation measures such as SDR, PESQ, and STOI.

The proposal of a cryptographic method for the communication message security of GCS to support safe UAV operations (안정적인 UAV 운영을 위한 GCS의 통신메시지의 암호화 제안)

  • Kim, Byoung-Kug;Hong, Sung-Hwa;Kang, Jiheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1353-1358
    • /
    • 2021
  • IoT (Internet of Things) emerges from various technologies such as communications, micro processors and embedded system and so on. The IoT has also been used to UAV (Unmanned Aerial Vehicle) system. In manned aircraft, a pilot and co-pilot should control FCS (Flight Control System) with FBW(Fly By Wire) system for flight operation. In contrast, the flight operation in UAV system is remotely and fully managed by GCS (Ground Control System) almost in real time. To make it possible the communication channel should be necessary between the UAV and the GCS. There are many protocols between two systems. Amongst them, MAVLink (Macro Air Vehicle Link) protocol is representatively used due to its open architecture. MAVLink does not define any securities itself, which results in high vulnerability from external attacks. This paper proposes the method to enhance data security in GCS network by applying cryptographic methods to the MAVLink messages in order to support safe UAV operations.

Ground Station Antenna Pattern Design for Network-Based UAV Command and Control Communication Systems (네트워크 기반 무인기 제어 통신시스템을 위한 지상국 안테나 패턴 설계)

  • Kim, Kyung-Ho;Kim, Hee Wook;Jung, Young-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.384-389
    • /
    • 2021
  • An optimal ground station (GS) antenna pattern design method for network-based UAV command and control communication systems considering complexity and performance is presented. The GS antenna consists of multiple side sectors and one upward sector. The antenna gain for each vertical/horizontal angle of the GS antenna according to the change of antenna design parameters such as the number of sectors, horizontal and vertical beam-width, and tilt-angle is modeled, and the effect of the parameter changes on the signal-to-noise ratio (SNR) distribution in the virtual three-dimensional space is analyzed. It is observed that the tilt-angle of the side sectors has the greatest effect on the performance, and the longer the distance between GSs, the higher the maximum altitude and the smaller the number of side sectors, the tilt-angle should be lower. In addition, it is observed that the wider vertical beam-width of the side sector is advantageous in maximizing the lowest SNR, but narrow vertical beam-width is advantageous in maximizing the average SNR.

Group Mobility Control Mechanism for Micro Unmanned Aerial Vehicle (소형 무인 비행체 집단의 이동성 제어 기법)

  • Nam, Su-Hyun;Choi, Myung-Whan;Choi, Hyo-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.4
    • /
    • pp.99-107
    • /
    • 2012
  • We propose control mechanism of UAV(Unmanned Aerial Vehicle) group for making the communication network to the base station after the target is found. We assume UAVs can communicate to each other by wireless LAN without existing communication infrastructure. UAVs started to fly in linear formation, after finding target, UAVs move to the base station to send the information about the target. At least one UAV stays the position that the target is found. This paper explains the mechanism supporting reliable connectivity during UAV group's flying. We verify the proposed scheme and evaluate the performance through NS-2 simulation. The proposed scheme can be applied to the disaster area and war zone, which the existing communication infrastructure cannot be worked.

Use of unmanned aerial systems for communication and air mobility in Arctic region

  • Gennady V., Chechin;Valentin E., Kolesnichenko;Anton I., Selin
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.6
    • /
    • pp.525-536
    • /
    • 2022
  • The current state of telecommunications infrastructure in the Arctic does not allow providing a wide range of required services for people, businesses and other categories, which necessitates the use of non-traditional approaches to its organization. The paper proposes an innovative approach to building a combined communication network based on tethered high-altitude platform station (HAPS) located at an altitude of 1-7 km and connected via radio channels with terrestrial and satellite communication networks. Network configuration and composition of telecommunication equipment placed on HAPS and located on the terrestrial and satellite segment of the network was justified. The availability of modern equipment and the distributed structure of such an integrated network will allow, unlike existing networks (Iridium, Gonets, etc.), to organize personal mobile communications, data transmission and broadband Internet up to 100 Mbps access for mobile and fixed subscribers, rapid transmission of information from Internet of Things (IoT) sensors and unmanned aerial vehicles (UAV). A substantiation of the possibility of achieving high network capacity in various paths is presented: inter-platform radio links, subscriber radio links, HAPS feeder lines - terrestrial network gateway, HAPS radio links - satellite retransmitter (SR), etc. The economic efficiency of the proposed solution is assessed.

AP Selection Criteria for UAV High-precision Indoor Positioning based on IEEE 802.11 RSSI Measurement (IEEE 802.11 RSSI 기반 무인비행로봇 실내측위를 위한 AP 선택 기법)

  • Hwang, Jun Gyu;Park, Joon Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1204-1208
    • /
    • 2014
  • As required performance of UAV (Unmanned Aerial Vehicle) becomes more complex and complicated, required positioning accuracy is becoming more and more higher. GPS is a reliable world wide positioning providing system. Therefore, UAV generally acquires position information from GPS. But when GPS is not available such as too weak signal or too less GPS satellites environments, UAV needs alternative positioning system such as network positioning system. RSSI (Received Signal Strength Indicator) based positioning, which is one method of network positioning technologies, determines its position using RSSI measurements containing distance information from AP (Access Point)s. In that method, a selected AP's configuration has strong and tight relationship with its positioning errors. In this paper, for, we additionally account AP's configuration information by adopting DOP (Dilution of Precision) into AP selection procedures and provide more accurate RSSI based positioning results.