• Title/Summary/Keyword: UAV Spatial Images

Search Result 108, Processing Time 0.248 seconds

Thematic and geometric analysis of Bangpo beach based on UAV Remote Sensing (무인항공기반 태안반도 방포해빈의 지형분석)

  • Bae, Sungji;Yu, Jaehyung;Jeong, Yong-Sik;Yang, Dongyoon;Han, Min
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.117-128
    • /
    • 2016
  • High resolution aerial photographs and digital elevation models for Bangpo beach using UAV were generated in this study to analyze the thematic and geometric characteristics of coastal features. Based on 728 aerial images acquired on September 10, 2016 by the UAV, a image mosaic at 2.2 cm spatial resolution and a digital elevation model at 4.4 cm spatial resolution were developed. This study found out that Bangpo beach consisted of intertidal zone and supratidal zone. The intertidal zone can be subdivided into lower part and upper part with distinctive geomorphological characteristics. While the lower part included sand bars and ripple marks along the coastline, the cusps and sand dunes were the major coastal features of the upper part. Part of the intertidal zone was occupied by shore platform with average slope of 0.9 degree containing various sizes of gravels. The supratidal zone slanted toward ocean with berms on the surface with an interval of 15 m. These coastal features indicated the flow intensity towards to the land and tidal effect. It validated that the UAV application in coastal research was very effective analyzing to examine coastal processes.

A Study on the Spatial Distribution Patterns of Urban Green Spaces Using Local Spatial Autocorrelation Statistics (국지적 공간자기상관통계를 이용한 도시녹지의 공간적 분포패턴에 관한 연구)

  • Kim, Yun-Ki
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.25-45
    • /
    • 2020
  • The primary purpose of this study is to compare and analyze the performance of local spatial autocorrelation techniques in identifying spatial distribution patterns of green spaces. To achieve the objective, this researcher uses satellite image analysis and spatial autocorrelation techniques. The result of the study shows that the LISA cluster map with the spatial outlier cluster is superior to other analytical methods in identifying the spatial distribution pattern of urban green space. This study can contribute to the related fields in that it uses several different research methods than the existing ones. Despite this differentiation and usefulness, this study has limitations in using low-resolution satellite imagery and NDVI among vegetation indices in identifying spatial distribution patterns of green areas. These limitations may be overcome in future studies by using UAV images or by simultaneously using several vegetation indices.

The Study on Spatial Classification of Riverine Environment using UAV Hyperspectral Image (UAV를 활용한 초분광 영상의 하천공간특성 분류 연구)

  • Kim, Young-Joo;Han, Hyeong-Jun;Kang, Joon-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.633-639
    • /
    • 2018
  • High-resolution images using remote sensing (RS) is importance to secure for spatial classification depending on the characteristics of the complex and various factors that make up the river environment. The purpose of this study is to evaluate the accuracy of the classification results and to suggest the possibility of applying the high resolution hyperspectral images obtained by using the drone to perform spatial classification. Hyperspectral images obtained from study area were reduced the dimensionality with PCA and MNF transformation to remove effects of noise. Spatial classification was performed by supervised classifications such as MLC(Maximum Likelihood Classification), SVM(Support Vector Machine) and SAM(Spectral Angle Mapping). In overall, the highest classification accuracy was showed when the MLC supervised classification was used by MNF transformed image. However, it was confirmed that the misclassification was mainly found in the boundary of some classes including water body and the shadowing area. The results of this study can be used as basic data for remote sensing using drone and hyperspectral sensor, and it is expected that it can be applied to a wider range of river environments through the development of additional algorithms.

Estimation of Highland Kimchi Cabbage Growth using UAV NDVI and Agro-meteorological Factors

  • Na, Sang-Il;Hong, Suk-Young;Park, Chan-Won;Kim, Ki-Deog;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.420-428
    • /
    • 2016
  • For more than 50 years, satellite images have been used to monitor crop growth. Currently, unmanned aerial vehicle (UAV) imagery is being assessed for analyzing within field spatial variability for agricultural precision management, because UAV imagery may be acquired quickly during critical periods of rapid crop growth. This study refers to the derivation of growth estimating equation for highland Kimchi cabbage using UAV derived normalized difference vegetation index (NDVI) and agro-meteorological factors. Anbandeok area in Gangneung, Gangwon-do, Korea is one of main districts producing highland Kimchi cabbage. UAV imagery was taken in the Anbandeok ten times from early June to early September. Meanwhile, three plant growth parameters, plant height (P.H.), leaf length (L.L.) and outer leaf number (L.N.), were measured for about 40 plants (ten plants per plot) for each ground survey. Six agro-meteorological factors include average temperature; maximum temperature; minimum temperature; accumulated temperature; rainfall and irradiation during growth period. The multiple linear regression models were suggested by using stepwise regression in the extraction of independent variables. As a result, $NDVI_{UAV}$ and rainfall in the model explain 93% of the P.H. and L.L. with a root mean square error (RMSE) of 2.22, 1.90 cm. And $NDVI_{UAV}$ and accumulated temperature in the model explain 86% of the L.N. with a RMSE of 4.29. These lead to the result that the characteristics of variations in highland Kimchi cabbage growth according to $NDVI_{UAV}$ and other agro-meteorological factors were well reflected in the model.

Methodology for Generating UAV's Effective Flight Area that Satisfies the Required Spatial Resolution (요구 공간해상도를 만족하는 무인기의 유효 비행 영역 생성 방법)

  • Ji Won Woo;Yang Gon Kim;Jung Woo An;Sang Yun Park;Gyeong Rae Nam
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.400-407
    • /
    • 2024
  • The role of unmanned aerial vehicles (UAVs) in modern warfare is increasingly significant, making their capacity for autonomous missions essential. Accordingly, autonomous target detection/identification based on captured images is crucial, yet the effectiveness of AI models depends on image sharpness. Therefore, this study describes how to determine the field of view (FOV) of the camera and the flight position of the UAV considering the required spatial resolution. Firstly, the calculation of the size of the acquisition area is discussed in relation to the relative position of the UAV and the FOV of the camera. Through this, this paper first calculates the area that can satisfy the spatial resolution and then calculates the relative position of the UAV and the FOV of the camera that can satisfy it. Furthermore, this paper propose a method for calculating the effective range of the UAV's position that can satisfy the required spatial resolution, centred on the coordinate to be photographed. This is then processed into a tabular format, which can be used for mission planning.

Assessment of LODs and Positional Accuracy for 3D Model based on UAV Images (무인항공영상 기반 3D 모델의 세밀도와 위치정확도 평가)

  • Lee, Jae One;Kim, Doo Pyo;Sung, Sang Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.197-205
    • /
    • 2020
  • Compared to aerial photogrammetry, UAV photogrammetry has advantages in acquiring and utilizing high-resolution images more quickly. The production of 3D models using UAV photogrammetry has become an important issue at a time when the applications of 3D spatial information are proliferating. Therefore, this study assessed the feasibility of utilizing 3D models produced by UAV photogrammetry through quantitative and qualitative analyses. The qualitative analysis was performed in accordance with the LODs (Level of Details) specified in the 3D Land Spatial Information Construction Regulation. The results showed that the features on planes have a high LoD while features with elevation differences have a low LoD due to the occlusion area and parallax. Quantitative analysis was performed using the 3D coordinates obtained from the CPs (Checkpoints) and edges of nearby structures. The mean errors for residuals at CPs were 0.042 m to 0.059 m in the horizontal and 0.050 m to 0.161 m in the vertical coordinates while the mean errors in the structure's edges were 0.068 m and 0.071 m in horizontal and vertical coordinates, respectively. Therefore, this study confirmed the potential of 3D models from UAV photogrammetry for analyzing the digital twin and slope as well as BIM (Building Information Modeling).

A Study on the UAV-based Vegetable Index Comparison for Detection of Pine Wilt Disease Trees (소나무재선충병 피해목 탐지를 위한 UAV기반의 식생지수 비교 연구)

  • Jung, Yoon-Young;Kim, Sang-Wook
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.201-214
    • /
    • 2020
  • This study aimed to early detect damaged trees by pine wilt disease using the vegetation indices of UAV images. The location data of 193 pine wilt disease trees were constructed through field surveys and vegetation index analyses of NDVI, GNDVI, NDRE and SAVI were performed using multi-spectral UAV images at the same time. K-Means algorithm was adopted to classify damaged trees and confusion matrix was used to compare and analyze the classification accuracy. The results of the study are summarized as follows. First, the overall accuracy of the classification was analyzed in order of NDVI (88.04%, Kappa coefficient 0.76) > GNDVI (86.01%, Kappa coefficient 0.72) > NDRE (77.35%, Kappa coefficient 0.55) > SAVI (76.84%, Kappa coefficient 0.54) and showed the highest accuracy of NDVI. Second, K-Means unsupervised classification method using NDVI or GNDVI is possible to some extent to find out the damaged trees. In particular, this technique is to help early detection of damaged trees due to its intensive operation, low user intervention and relatively simple analysis process. In the future, it is expected that the utilization of time series images or the application of deep learning techniques will increase the accuracy of classification.

Land Cover Classification of High-Spatial Resolution Imagery using Fixed-Wing UAV (고정익 UAV를 이용한 고해상도 영상의 토지피복분류)

  • Yang, Sung-Ryong;Lee, Hak-Sool
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.501-509
    • /
    • 2018
  • Purpose: UAV-based photo measurements are being researched using UAVs in the space information field as they are not only cost-effective compared to conventional aerial imaging but also easy to obtain high-resolution data on desired time and location. In this study, the UAV-based high-resolution images were used to perform the land cover classification. Method: RGB cameras were used to obtain high-resolution images, and in addition, multi-distribution cameras were used to photograph the same regions in order to accurately classify the feeding areas. Finally, Land cover classification was carried out for a total of seven classes using created ortho image by RGB and multispectral camera, DSM(Digital Surface Model), NDVI(Normalized Difference Vegetation Index), GLCM(Gray-Level Co-occurrence Matrix) using RF (Random Forest), a representative supervisory classification system. Results: To assess the accuracy of the classification, an accuracy assessment based on the error matrix was conducted, and the accuracy assessment results were verified that the proposed method could effectively classify classes in the region by comparing with the supervisory results using RGB images only. Conclusion: In case of adding orthoimage, multispectral image, NDVI and GLCM proposed in this study, accuracy was higher than that of conventional orthoimage. Future research will attempt to improve classification accuracy through the development of additional input data.

A Study on the Changes in the Physical Environment of Resources in Rural Areas Using UAV -Focusing on Resources in Galsan-Myeon, Hongseong-gun- (무인항공기를 활용한 농촌 지역자원의 물리적 환경변화 분석연구 - 홍성군 갈산면 지역자원을 중심으로 -)

  • An, Phil-Gyun;Kim, Sang-Bum;Cho, Suk-Yeong;Eom, Seong-Jun;Kim, Young-Gyun;Cho, Han-Sol
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.4
    • /
    • pp.1-12
    • /
    • 2021
  • Recently, the use of unmanned aerial vehicles (UAVs) is increasing in the field of land information acquisition and terrain exploration through high-altitude aerial photography. High-altitude aerial photography is suitable for large-scale geographic information collection, but has the disadvantage that it is difficult to accurately collect small-scale geographic information. Therefore, this study used low-altitude UAV to monitor changes in small rural spaces around rural resources, and the results are as follows. First, the low-altitude aerial imagery had a very high spatial resolution, so it was effective in reading and analyzing topographic features. Second, an area with a large number of aerial images and a complex topography had a large amount of point clouds to be extracted, and the number of point clouds affects the three-dimensional quality of rural space. Third, 3D mapping technology using point cloud is effective for monitoring rural space and rural resources because it enables observation and comparison of parts that cannot be read from general aerial images. In this study, the possibility of rural space analysis of low-altitude UAV was verified through aerial photography and analysis, and the effect of 3D mapping on rural space monitoring was visually analyzed. If data acquired by low-altitude UAV are used in various forms such as GIS analysis and topographic map production it is expected to be used as basic data for rural planning to maintain and preserve the rural environment.

Assessing Stream Vegetation Dynamics and Revetment Impact Using Time-Series RGB UAV Images and ResNeXt101 CNNs

  • Seung-Hwan Go;Kyeong-Soo Jeong;Jong-Hwa Park
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.9-18
    • /
    • 2024
  • Small streams, despite their rich ecosystems, face challenges in vegetation assessment due to the limitations of traditional, time-consuming methods. This study presents a groundbreaking approach, combining unmanned aerial vehicles(UAVs), convolutional neural networks(CNNs), and the vegetation differential vegetation index (VDVI), to revolutionize both assessment and management of stream vegetation. Focusing on Idong Stream in South Korea (2.7 km long, 2.34 km2 basin area)with eight diverse revetment methods, we leveraged high-resolution RGB images captured by UAVs across five dates (July-December). These images trained a ResNeXt101 CNN model, achieving an impressive 89% accuracy in classifying vegetation cover(soil,water, and vegetation). This enabled detailed spatial and temporal analysis of vegetation distribution. Further, VDVI calculations on classified vegetation areas allowed assessment of vegetation vitality. Our key findings showcase the power of this approach:(a) TheCNN model generated highly accurate cover maps, facilitating precise monitoring of vegetation changes overtime and space. (b) August displayed the highest average VDVI(0.24), indicating peak vegetation growth crucial for stabilizing streambanks and resisting flow. (c) Different revetment methods impacted vegetation vitality. Fieldstone sections exhibited initial high vitality followed by decline due to leaf browning. Block-type sections and the control group showed a gradual decline after peak growth. Interestingly, the "H environment block" exhibited minimal change, suggesting potential benefits for specific ecological functions.(d) Despite initial differences, all sections converged in vegetation distribution trends after 15 years due to the influence of surrounding vegetation. This study demonstrates the immense potential of UAV-based remote sensing and CNNs for revolutionizing small-stream vegetation assessment and management. By providing high-resolution, temporally detailed data, this approach offers distinct advantages over traditional methods, ultimately benefiting both the environment and surrounding communities through informed decision-making for improved stream health and ecological conservation.